Data-driven modeling of dissolved iron in the global ocean
- 1. Duke University
- 2. University of Liverpool
Description
File Monthly_dFe_V2.nc (NC_FORMAT_CLASSIC):
1 variables (excluding dimension variables):
double dFe_RF [Longitude, Latitude, Depth, Month]
units: nmol L-1
FillValue: NaN
long_name: Monthly dissolved iron simulated from random forest algorithm
coordinates: [Longitude, Latitude, Depth, Month]
4 dimensions:
Longitude Size:357
units: degree_north
long_name: Longitude
Latitude Size:147
units: degree_east
long_name: Latitude
Depth Size:31
units: meter
long_name: Depth
Month Size:13
Units: "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec",
"Annuual mean"
long_name: Month
4 global attributes:
Authors: Yibin Huang & Nicolas Cassar
Corresponding author: nicolas.cassar@duke.edu
Request_for_citation: If you use these data in publications or presentations, please cite:
“Huang, Y., Tagliabue, A., & Cassar, N. (2022). Data-driven modeling of dissolved iron in
the global ocean. Frontiers in Marine Science”.
Creation date: Aug/4th/2022
Updated record: the updated version entitled "Month_dFe_V2" interpolates to a greater degree, thereby filling missing values in some coastal and open ocean regions.
Files
Files
(339.8 MB)
Name | Size | Download all |
---|---|---|
md5:710627f9d626e80f015710b636d974e3
|
169.2 MB | Download |
md5:f07d253e7dec96e0353f2c128ff6698f
|
170.6 MB | Download |