Published July 25, 2022 | Version 3
Dataset Open

Potential and realized distribution at 30m for Holm oak (Quercus ilex) in Europe for 2000 - 2020

  • 1. OpenGeoHub foundation
  • 2. Institute for Geoinformatics, Münster
  • 3. University of Bremen
  • 4. Wageningen University & Research

Description

Probability and uncertainty maps showing the potential and realized distribution for the holm oak (Quercus ilex L.) for Europe from the dataset prepared by Bonannella et al. (2022) and predicted using Ensemble Machine Learning (EML). Potential distribution map cover the period 2018 - 2020; realized distribution cover the period 2000 - 2020, split in the following time periods:

  • 2000 - 2002,
  • 2002 - 2006,
  • 2006 - 2010,
  • 2010 - 2014,
  • 2014 - 2018,
  • 2018 - 2020.

Files are named according to the following naming convention, e.g:

  • veg_quercus.ilex_anv.eml_md_30m_0..0cm_2000..2002_eumap_epsg3035_v0.3

with the following fields:

  • theme: e.g. veg,
  • species code: e.g. quercus.ilex,
  • species distribution type: e.g. anv (= actual natural vegetation),
  • species estimation method: e.g. eml,
  • species estimation type: e.g. md ( = model deviation),
  • resolution in meters e.g. 30m,
  • reference depths (vertical dimension): e.g. 0..0cm,
  • reference period begin end: e.g. 2000..2002,
  • reference area: e.g. eumap,
  • coordinate system: e.g. epsg3035,
  • data set version: e.g. v0.3.

For each species is then easy to identify probability and uncertainty distribution maps:

  • veg_quercus.ilex_anv.eml_md: model uncertainty for realized distribution
  • veg_quercus.ilex_anv.eml_p: probability for realized distribution
  • veg_quercus.ilex_pnv.eml_md: model uncertainty for potential distribution
  • veg_quercus.ilex_pnv.eml_p: probability for potential distribution

Files are provided as Cloud Optimized GeoTIFFs and projected in the Coordinate Reference System ETRS89 / LAEA Europe (= EPSG code 3035). Styling files are provided in both SLD and QML format.

If you would like to know more about the creation of the maps and the modeling:

  • watch the talk at Open Data Science Workshop 2021 (TIB AV-PORTAL)
  • access the repository with our R/Python scripts and follow the instructions (GitLab)
  • access the repository with the training dataset (Zenodo)
  • read the tutorial with executable code on our GitBook

 

A publication describing, in detail, all processing steps, accuracy assessment and general analysis of species distribution maps is available on PeerJ. To suggest any improvement/fix use https://gitlab.com/geoharmonizer_inea/spatial-layers/-/issues

Notes

This work is co-financed under Grant Agreement Connecting Europe Facility (CEF) Telecom project 2018-EU-IA-0095 by the European Union (https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2018-eu-ia-0095).

Files

00_preview_quercus.ilex.png

Files (9.9 GB)

Name Size Download all
md5:f45ba1ea18dd511272e6b8a499733f0d
1.6 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:a1f04dd00d3a5c73ec2ed234cae7cb36
1.3 kB Download
md5:a3e3531b868706b11fa1f8223904e98b
1.0 GB Preview Download
md5:b130a2ccca7d5d130bdc139b1306cbe5
794.4 MB Preview Download
md5:83b92ca9cc4c823d725cd90adc6db9bd
912.9 MB Preview Download
md5:07848eb141916363a1e2e4638dd9c029
790.0 MB Preview Download
md5:7b6ec8911652619e6c0a964c8abb90b4
785.4 MB Preview Download
md5:7f33bcfce57c32156e96c8b16129378a
827.3 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:2c9f30e3b4c7ee84cf10c5856e1bca54
1.3 kB Download
md5:44aceaeefdf1406422c4fdfc829289b2
643.1 MB Preview Download
md5:ab1758962ad4357fe760c4e2f1898ebb
481.0 MB Preview Download
md5:0d74bdf87b165be8f246d9b810303bc6
560.4 MB Preview Download
md5:5418ac9d9ff7586c6becfe0e6bd5997e
477.9 MB Preview Download
md5:f09d906e0b9820d9929971c4de0713c9
484.1 MB Preview Download
md5:a29ddebebd65ef816bc756e41cf4489d
504.0 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:31281617b72d62b378c1ccbaaf296ed9
1.3 kB Download
md5:62e6de065fcf9ad4bef3678238f631ae
978.9 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:c485458a1fc372a2f427084097f5b53e
1.3 kB Download
md5:92399e57ed5ab15dd03b3edff1fc1c32
601.5 MB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.5281/zenodo.5818021 (DOI)