Published July 25, 2022 | Version 3
Dataset Open

Potential and realized distribution at 30m for Stone pine (Pinus pinea) in Europe for 2000 - 2020

  • 1. OpenGeoHub foundation
  • 2. Institute for Geoinformatics, Münster
  • 3. University of Bremen
  • 4. Wageningen University & Research

Description

Probability and uncertainty maps showing the potential and realized distribution for the stone pine (Pinus pinea, L.) for Europe from the dataset prepared by Bonannella et al. (2022) and predicted using Ensemble Machine Learning (EML). Potential distribution map cover the period 2018 - 2020; realized distribution cover the period 2000 - 2020, split in the following time periods:

  • 2000 - 2002,
  • 2002 - 2006,
  • 2006 - 2010,
  • 2010 - 2014,
  • 2014 - 2018,
  • 2018 - 2020.

Files are named according to the following naming convention, e.g:

  • veg_pinus.pinea_anv.eml_md_30m_0..0cm_2000..2002_eumap_epsg3035_v0.3

with the following fields:

  • theme: e.g. veg,
  • species code: e.g. pinus.pinea,
  • species distribution type: e.g. anv (= actual natural vegetation),
  • species estimation method: e.g. eml,
  • species estimation type: e.g. md ( = model deviation),
  • resolution in meters e.g. 30m,
  • reference depths (vertical dimension): e.g. 0..0cm,
  • reference period begin end: e.g. 2000..2002,
  • reference area: e.g. eumap,
  • coordinate system: e.g. epsg3035,
  • data set version: e.g. v0.3.

For each species is then easy to identify probability and uncertainty distribution maps:

  • veg_pinus.pinea_anv.eml_md: model uncertainty for realized distribution
  • veg_pinus.pinea_anv.eml_p: probability for realized distribution
  • veg_pinus.pinea_pnv.eml_md: model uncertainty for potential distribution
  • veg_pinus.pinea_pnv.eml_p: probability for potential distribution

Files are provided as Cloud Optimized GeoTIFFs and projected in the Coordinate Reference System ETRS89 / LAEA Europe (= EPSG code 3035). Styling files are provided in both SLD and QML format.

If you would like to know more about the creation of the maps and the modeling:

  • watch the talk at Open Data Science Workshop 2021 (TIB AV-PORTAL)
  • access the repository with our R/Python scripts and follow the instructions (GitLab)
  • access the repository with the training dataset (Zenodo)
  • read the tutorial with executable code on our GitBook

A publication describing, in detail, all processing steps, accuracy assessment and general analysis of species distribution maps is available on PeerJ. To suggest any improvement/fix use https://gitlab.com/geoharmonizer_inea/spatial-layers/-/issues.

Notes

This work is co-financed under Grant Agreement Connecting Europe Facility (CEF) Telecom project 2018-EU-IA-0095 by the European Union (https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2018-eu-ia-0095).

Files

00_preview_pinus.pinea.png

Files (4.8 GB)

Name Size Download all
md5:d2393e4c24571a32ab44a6cf0900ff93
1.6 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:316f420be413d92fe9525724fae3454f
1.3 kB Download
md5:4035b755abdd304680f4bf20a5645928
532.8 MB Preview Download
md5:6197cb908b494b2a274df6dd31b14c17
365.0 MB Preview Download
md5:7511efcbb0e3871a850ab7c02761f89d
424.1 MB Preview Download
md5:6f3d3786079df4d94b81105a713ca395
350.2 MB Preview Download
md5:b679204175e1efac21da2279af90ffac
357.4 MB Preview Download
md5:b822fa308839fa13b8bf8160e5d37bfb
370.7 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:27bf86b4eade7429093a473b3aef67cd
1.3 kB Download
md5:af8a7525d49c877b32dd40c2834ed912
268.4 MB Preview Download
md5:1a914731f8bdf67c8c85597ac004547c
163.4 MB Preview Download
md5:25349af903385675b596321550d23091
198.8 MB Preview Download
md5:91d892c14e24b31820b3c1ffde75e126
158.2 MB Preview Download
md5:4cc8e1ae2de42f1d06ff57fd2a0d48dd
156.8 MB Preview Download
md5:d39d46b3053b3e04f940b960e03b34d3
162.8 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:7fa490571f050a0d0af838b7d5aa1212
1.3 kB Download
md5:558363aa940bc8cb7270b199856f2fb0
821.9 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:bf19e4c2b3328de75b99b54a9b4f233f
1.3 kB Download
md5:9e36a2485182586ae9d4ad91c00eb970
461.8 MB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.5281/zenodo.5818021 (DOI)