Published July 25, 2022 | Version 3
Dataset Open

Potential and realized distribution at 30m for Austrian pine (Pinus nigra) in Europe for 2000 - 2020

  • 1. OpenGeoHub foundation
  • 2. Institute for Geoinformatics, Münster
  • 3. University of Bremen
  • 4. Wageningen University & Research

Description

Probability and uncertainty maps showing the potential and realized distribution for the Austrian pine (Pinus nigra J. F. Arnold) for Europe from the dataset prepared by Bonannella et al. (2022) and predicted using Ensemble Machine Learning (EML). Potential distribution map cover the period 2018 - 2020; realized distribution cover the period 2000 - 2020, split in the following time periods:

  • 2000 - 2002,
  • 2002 - 2006,
  • 2006 - 2010,
  • 2010 - 2014,
  • 2014 - 2018,
  • 2018 - 2020.

Files are named according to the following naming convention, e.g:

  • veg_pinus.nigra_anv.eml_md_30m_0..0cm_2000..2002_eumap_epsg3035_v0.3

with the following fields:

  • theme: e.g. veg,
  • species code: e.g. pinus.nigra,
  • species distribution type: e.g. anv (= actual natural vegetation),
  • species estimation method: e.g. eml,
  • species estimation type: e.g. md ( = model deviation),
  • resolution in meters e.g. 30m,
  • reference depths (vertical dimension): e.g. 0..0cm,
  • reference period begin end: e.g. 2000..2002,
  • reference area: e.g. eumap,
  • coordinate system: e.g. epsg3035,
  • data set version: e.g. v0.3.

For each species is then easy to identify probability and uncertainty distribution maps:

  • veg_pinus.nigra_anv.eml_md: model uncertainty for realized distribution
  • veg_pinus.nigra_anv.eml_p: probability for realized distribution
  • veg_pinus.nigra_pnv.eml_md: model uncertainty for potential distribution
  • veg_pinus.nigra_pnv.eml_p: probability for potential distribution

Files are provided as Cloud Optimized GeoTIFFs and projected in the Coordinate Reference System ETRS89 / LAEA Europe (= EPSG code 3035). Styling files are provided in both SLD and QML format.

If you would like to know more about the creation of the maps and the modeling:

  • watch the talk at Open Data Science Workshop 2021 (TIB AV-PORTAL)
  • access the repository with our R/Python scripts and follow the instructions (GitLab)
  • access the repository with the training dataset (Zenodo)
  • read the tutorial with executable code on our GitBook

 

A publication describing, in detail, all processing steps, accuracy assessment and general analysis of species distribution maps is available on PeerJ. To suggest any improvement/fix use https://gitlab.com/geoharmonizer_inea/spatial-layers/-/issues.

Notes

This work is co-financed under Grant Agreement Connecting Europe Facility (CEF) Telecom project 2018-EU-IA-0095 by the European Union (https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2018-eu-ia-0095).

Files

00-preview_pinus.nigra.png

Files (12.7 GB)

Name Size Download all
md5:2413fc7cb1fe8bc56bac82e0bed7d53c
1.7 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:5818b3001b14d209b0b30a383c9d2d06
1.3 kB Download
md5:cae3ad90b82fd91608045c594e434854
1.8 GB Preview Download
md5:7eb540bed6e418e8e888d728e054aca5
939.5 MB Preview Download
md5:036c4c2bbb16fa974f9e12a2eb6761bc
1.2 GB Preview Download
md5:126a3060309646a784296eae69159f18
881.1 MB Preview Download
md5:dfb1fc7d9411ebde15af429bd6f395f2
860.3 MB Preview Download
md5:14f913529829aec7c95e9872c80898d2
926.9 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:0c84c70cf3afeffaaec2ce827b064c86
1.3 kB Download
md5:682cbe1627736116559c611dfbcbb874
1.4 GB Preview Download
md5:38fa9bacb15ebf69f4ac30c221317df9
544.7 MB Preview Download
md5:eb64178a3ede714ce628b878cc5e43e2
768.3 MB Preview Download
md5:588a625840856ba18ae2d4279089253f
507.8 MB Preview Download
md5:f829cd19cefbee487352d549ef131818
516.6 MB Preview Download
md5:be5b4e337c89ff9206f771d3ba34179a
564.7 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:9208edcbe43a4fa2bf13d35e23b9ffc9
1.3 kB Download
md5:6f04a8d9e0297cb496946696e09e30aa
1.1 GB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:7633c25b14a06c9f11d858c8f2378fe6
1.3 kB Download
md5:9171db6be37ae1f244ca2a89a1e12e04
713.2 MB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.5281/zenodo.5818021 (DOI)