Published July 25, 2022 | Version 3
Dataset Open

Potential and realized distribution at 30m for Aleppo pine (Pinus halepensis) in Europe for 2000 - 2020

  • 1. OpenGeoHub foundation
  • 2. Institute for Geoinformatics, Münster
  • 3. University of Bremen
  • 4. Wageningen University & Research

Description

Probability and uncertainty maps showing the potential and realized distribution for the Aleppo pine (Pinus halepensis, Mill.) for Europe from the dataset prepared by Bonannella et al. (2022) and predicted using Ensemble Machine Learning (EML). Potential distribution map cover the period 2018 - 2020; realized distribution cover the period 2000 - 2020, split in the following time periods:

  • 2000 - 2002,
  • 2002 - 2006,
  • 2006 - 2010,
  • 2010 - 2014,
  • 2014 - 2018,
  • 2018 - 2020.

Files are named according to the following naming convention, e.g:

  • veg_pinus.halepensis_anv.eml_md_30m_0..0cm_2000..2002_eumap_epsg3035_v0.3

with the following fields:

  • theme: e.g. veg,
  • species code: e.g. pinus.halepensis,
  • species distribution type: e.g. anv (= actual natural vegetation),
  • species estimation method: e.g. eml,
  • species estimation type: e.g. md ( = model deviation),
  • resolution in meters e.g. 30m,
  • reference depths (vertical dimension): e.g. 0..0cm,
  • reference period begin end: e.g. 2000..2002,
  • reference area: e.g. eumap,
  • coordinate system: e.g. epsg3035,
  • data set version: e.g. v0.3.

For each species is then easy to identify probability and uncertainty distribution maps:

  • veg_pinus.halepensis_anv.eml_md: model uncertainty for realized distribution
  • veg_pinus.halepensis_anv.eml_p: probability for realized distribution
  • veg_pinus.halepensis_pnv.eml_md: model uncertainty for potential distribution
  • veg_pinus.halepensis_pnv.eml_p: probability for potential distribution

Files are provided as Cloud Optimized GeoTIFFs and projected in the Coordinate Reference System ETRS89 / LAEA Europe (= EPSG code 3035). Styling files are provided in both SLD and QML format.

If you would like to know more about the creation of the maps and the modeling:

  • watch the talk at Open Data Science Workshop 2021 (TIB AV-PORTAL)
  • access the repository with our R/Python scripts and follow the instructions (GitLab)
  • access the repository with the training dataset (Zenodo)
  • read the tutorial with executable code on our GitBook

A publication describing, in detail, all processing steps, accuracy assessment and general analysis of species distribution maps is available on PeerJ. To suggest any improvement/fix use https://gitlab.com/geoharmonizer_inea/spatial-layers/-/issues.

Notes

This work is co-financed under Grant Agreement Connecting Europe Facility (CEF) Telecom project 2018-EU-IA-0095 by the European Union (https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2018-eu-ia-0095).

Files

00-preview_pinus.halepensis.png

Files (5.5 GB)

Name Size Download all
md5:61b90526ba1cf06209d564ad129b3b5d
1.6 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:d2ee498bc6334fdbccd37da069c189f5
1.4 kB Download
md5:f5fda33c95cade0831d367ff0c96ee8f
598.0 MB Preview Download
md5:5d35fd957f5efa2f889a81de8d9ce3c2
447.4 MB Preview Download
md5:6f73d8322205e887d00bec32249d8000
476.0 MB Preview Download
md5:5ea94264b1148b3b928cbfd8fc188003
418.8 MB Preview Download
md5:85c1212de4c00b174d0541fdc664ee7e
433.7 MB Preview Download
md5:4e3fc5e44311f240b47a09cd0e4b2b5b
453.6 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:92d65d925cf2aaae16980d337b2c67f7
1.3 kB Download
md5:41c95a0131dc36040a2c9d4dd8e09427
273.7 MB Preview Download
md5:8adb82bc69ef0fee87e2aee070c76919
197.1 MB Preview Download
md5:fb7bdcd7500b8ba4a2cc8474b52b46a6
204.8 MB Preview Download
md5:c028e389d9e556dbab8b0c5c871a0017
177.6 MB Preview Download
md5:b5f0dab976f1dc22ab5ee49e301a027a
182.1 MB Preview Download
md5:c5cefd0b0bc0d998899c3bf61160fd85
186.5 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:1ae9cd327883d100ddf9a096ad333509
1.4 kB Download
md5:d1d0ff2310ab5109c4b219e99a2d6212
530.8 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:2d4bd62d94bcb975399596b258129d51
1.3 kB Download
md5:89ffc71cf7099da95c2cd1d5f36d92a7
769.3 MB Preview Download
md5:1b07e80ad59e960cbd584e297b562e83
196.4 MB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.5281/zenodo.5818021 (DOI)