Published July 25, 2022 | Version 3
Dataset Open

Potential and realized distribution at 30m for Olive tree (Olea europaea) in Europe for 2000 - 2020

  • 1. OpenGeoHub foundation
  • 2. Institute for Geoinformatics, Münster
  • 3. University of Bremen
  • 4. Wageningen University & Research

Description

Probability and uncertainty maps showing the potential and realized distribution for the olive tree (Olea europaea, L.) for Europe from the dataset prepared by Bonannella et al. (2022) and predicted using Ensemble Machine Learning (EML). Potential distribution map cover the period 2018 - 2020; realized distribution cover the period 2000 - 2020, split in the following time periods:

  • 2000 - 2002,
  • 2002 - 2006,
  • 2006 - 2010,
  • 2010 - 2014,
  • 2014 - 2018,
  • 2018 - 2020.

Files are named according to the following naming convention, e.g:

  • veg_olea.europaea_anv.eml_md_30m_0..0cm_2000..2002_eumap_epsg3035_v0.3

with the following fields:

  • theme: e.g. veg,
  • species code: e.g. olea.europaea,
  • species distribution type: e.g. anv (= actual natural vegetation),
  • species estimation method: e.g. eml,
  • species estimation type: e.g. md ( = model deviation),
  • resolution in meters e.g. 30m,
  • reference depths (vertical dimension): e.g. 0..0cm,
  • reference period begin end: e.g. 2000..2002,
  • reference area: e.g. eumap,
  • coordinate system: e.g. epsg3035,
  • data set version: e.g. v0.3.

For each species is then easy to identify probability and uncertainty distribution maps:

  • veg_olea.europaea_anv.eml_md: model uncertainty for realized distribution
  • veg_olea.europaea_anv.eml_p: probability for realized distribution
  • veg_olea.europaea_pnv.eml_md: model uncertainty for potential distribution
  • veg_olea.europaea_pnv.eml_p: probability for potential distribution

Files are provided as Cloud Optimized GeoTIFFs and projected in the Coordinate Reference System ETRS89 / LAEA Europe (= EPSG code 3035). Styling files are provided in both SLD and QML format.

If you would like to know more about the creation of the maps and the modeling:

  • watch the talk at Open Data Science Workshop 2021 (TIB AV-PORTAL)
  • access the repository with our R/Python scripts and follow the instructions (GitLab)
  • access the repository with the training dataset (Zenodo)
  • read the tutorial with executable code on our GitBook

A publication describing, in detail, all processing steps, accuracy assessment and general analysis of species distribution maps is available on PeerJ. To suggest any improvement/fix use https://gitlab.com/geoharmonizer_inea/spatial-layers/-/issues.

Notes

This work is co-financed under Grant Agreement Connecting Europe Facility (CEF) Telecom project 2018-EU-IA-0095 by the European Union (https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2018-eu-ia-0095).

Files

00-preview_olea.europaea.png

Files (4.0 GB)

Name Size Download all
md5:7544a5012a1d291bd746378d0bb62b4d
1.7 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:4196033a2e8ade19a65489cde45d22b3
1.3 kB Download
md5:bdf77bada52933e5e40d1ca98cb0846d
514.7 MB Preview Download
md5:fece1764291d85b52acf291ea2af2248
314.7 MB Preview Download
md5:895121d749bb92aa71d2a9daa04a9404
377.7 MB Preview Download
md5:1c256288c1da5176c18c0d51f6880785
311.0 MB Preview Download
md5:6463adfe2dbc83eba8bb9f3d397ee2c9
350.3 MB Preview Download
md5:a0173fd1729b00cd99e23d0c0a6be25c
383.9 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:5b8ab70de57a8bf44feb4adca3af8d13
1.3 kB Download
md5:4a0ce85729319122a3b9ae295d56bbe9
242.6 MB Preview Download
md5:5a3fd366c7d53c6e4604ae9a8239fdd8
121.3 MB Preview Download
md5:c9f4344e69e341ccc61c773c91cb1c60
149.8 MB Preview Download
md5:d302f3ae8396ff092e24f4f7062fdb7c
118.2 MB Preview Download
md5:8c752f0dfe0d422a5a75414979eef0e6
133.5 MB Preview Download
md5:af9dd1492d3fd17c42ed8c0854bd14a6
147.0 MB Preview Download
md5:76dd630186fa43d5e4c4fe4a3458e4d2
3.0 kB Download
md5:08eeaf671cd59b7550472ce6a245d09c
1.3 kB Download
md5:364f09dc66f2599860c41e81c436c228
601.1 MB Preview Download
md5:1269a551595dc9f0057c17acd856abe5
3.0 kB Download
md5:b71898704546a370e446e2138dcacf77
1.3 kB Download
md5:4bfec259289bd894a51c5c5773b0e896
278.7 MB Preview Download

Additional details

Related works

Is derived from
Dataset: 10.5281/zenodo.5818021 (DOI)