The dataset of photovoltaic power plant distribution in China by 2020
- 1. College of Geography and Environment, Henan University
Description
Photovoltaic (PV) technology, an efficient solution for mitigating the impacts of climate change, has been increasingly used across the world to replace fossil-fuel power to minimize greenhouse gas emissions. With the world's highest cumulative and fastest built PV capacity, China needs to assess the environmental and social impacts of these established photovoltaic (PV) power plants. However, a comprehensive map regarding the PV power plants' locations and extent remain scarce on the country scale. This study developed a workflow combining machine learning and visual interpretation methods with big satellite data to map PV power plants across China. We applied a pixel-based Random Forest (RF) model to classify the PV power plants from composite images in 2020 with 30-meter spatial resolution on Google Earth Engine (GEE). The result classification map was further improved by a visual interpretation approach. Eventually, we established a map of PV power plants in China by 2020, covering a total area of 2917 km2. We found that most PV power plants were sited on cropland, followed by barren land and grassland based on the derived national PV map. In addition, the installation of PV power plants has generally decreased the vegetation cover. This new dataset is expected to be conducive to policy management, environmental assessment, and further classification of PV power plants.
Files
PV_China_2020.zip
Files
(12.6 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:1af3f7148b7b17edda63dca9ef1ce934
|
3.7 MB | Preview Download |
|
md5:b689d101de388c132fb4b84e5f72f87b
|
8.9 MB | Preview Download |
Additional details
References
- Mapping photovoltaic power plants in China using Landsat, Random Forest, and Google Earth Engine. https://doi.org/10.5194/essd-2022-16