File uploads: We have fixed an issue which caused file uploads to fail. We apologise for the inconvenience it may have caused.

Published June 23, 2022 | Version 1.0
Dataset Open

CoFly-WeedDB: A UAV image dataset for weed detection and species identification

  • 1. Information Technologies Institute, The Centre for Research & Technology, Hellas, Thessaloniki, 57001, Greece
  • 2. Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, 67100, Greece

Description

The CoFly-WeedDB contains 201 RGB images (~436MB) from the attached camera of DJI Phantom Pro 4 from a cotton field in Larissa, Greece during the first stages of plant growth. The RGB images were collected while the Unmanned Aerial Vehicle (UAV) was performing a coverage mission over the field's area. During the designed mission, the camera angle was adjusted to -87°, vertically with the field. The flight altitude and speed of the UAV were equal to 5m and 3m/s, respectively, aiming to provide a close and clear view of the weed instances.  All images have been annotated by expert agronomists using the LabelMe annotation tool, providing the exact boundaries of 3 types of common weeds in this type of crop, namely (i) Johnson grass, (ii) Field bindweed, and (iii) Purslane. The dataset can be used alone and in combination with other datasets to develop AI-based methodologies for automatic weed segmentation and classification purposes.

Notes

This research has been financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE - INNOVATE (T1EDK-00636).

Files

CoFly-WeedDB.zip

Files (1.2 GB)

Name Size Download all
md5:006db24a62311a9bdf5636b92a8c0da3
1.2 GB Preview Download