Published February 18, 2022 | Version v1
Journal article Open

Method for Data Quality Assessment of Synthetic Industrial Data

  • 1. George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures

Description

Sometimes it is difficult, or even impossible, to acquire real data from sensors and machines that must be used in research. Such examples are the modern industrial platforms that frequently are reticent to share data. In such situations, the only option is to work with synthetic data obtained by simulation. Regarding simulated data, a limitation could consist in the fact that the data are not appropriate for research, based on poor quality or limited quantity. In such cases, the design of algorithms that are tested on that data does not give credible results. For avoiding such situations, we consider that mathematically grounded data-quality assessments should be designed according to the specific type of problem that must be solved. In this paper, we approach a multivariate type of prediction whose results finally can be used for binary classification. We propose the use of a mathematically grounded data-quality assessment, which includes, among other things, the analysis of predictive power of independent variables used for prediction. We present the assumptions that should be passed by the synthetic data. Different threshold values are established by a human assessor. In the case of research data, if all the assumptions pass, then we can consider that the data are appropriate for research and can be applied by even using other methods for solving the same type of problem. The applied method finally delivers a classification table on which can be applied any indicators of performed classification quality, such as sensitivity, specificity, accuracy, F1 score, area under curve (AUC), receiver operating characteristics (ROC), true skill statistics (TSS) and Kappa coefficient. These indicators’ values offer the possibility of comparison of the results obtained by applying the considered method with results of any other method applied for solving the same type of problem. For evaluation and validation purposes, we performed an experimental case study on a novel synthetic dataset provided by the well-known UCI data repository. 

Notes

This work was developed in the framework of the CHIST-ERA program supported by the Future and Emerging Technologies (FET) program of the European Union through the ERA-NET Cofund funding scheme under the grant agreements of Social Network of Machines (SOON). This research was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project number 101/2019, COFUND-CHISTERA-SOON, within PNCDI III. This work was developed in the framework of the CHIST-ERA program supported by the Future and Emerging Technologies (FET) program of the European Union through the ERA-NET Cofund funding scheme under the grant agreements of Social Network of Machines (SOON). This research was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project number 101/2019, COFUND-CHISTERA-SOON, within PNCDI III. We would like also to thank you for the Research Center on Artificial Intelligence, Data Science and Smart Engineering (Artemis).

Files

sensors-22-01608-v3.pdf

Files (1.0 MB)

Name Size Download all
md5:107f0fa8c5af0db062d54744307fca3d
1.0 MB Preview Download