rwightman/pytorch-image-models: TPU VM Trained Weight release w/ PyTorch XLA
Creators
- Ross Wightman
- Alexander Soare
- Aman Arora1
- Chris Ha2
- Nathan Raw3
- Mike
- Richard Chen
- contrastive4
- Mohammed Rizin5
- mrT23
- Hyeongchan Kim
- Csaba Kertész6
- Dushyant Mehta
- Guillem Cucurull
- Kushajveer Singh
- Andrew Lavin
- Juntang Zhuang
- Matthijs Hollemans7
- Sepehr Sameni8
- Vyacheslav Shults
- Yusuke Uchida9
- Zhun Zhong10
- Comar
- Kim, Taehoon11
- Alexey Chernov
- Greg Dongyoon Han12
- Eli Uriegas13
- Jasha10
- Marcin Kardas
- Michael Monashev
- 1. Weights & Biases
- 2. independent
- 3. @huggingface
- 4. MIT
- 5. Kaggle Competition Master
- 6. Neuro Event Labs Oy
- 7. Indie developer
- 8. University of Bern
- 9. Mobility Technologies Co., Ltd.
- 10. Xiamen University
- 11. LG AI Research
- 12. AI Lab, Naver Corp.
- 13. @pytorch
Description
A wide range of mid-large sized models trained in PyTorch XLA on TPU VM instances. Demonstrating viability of the TPU + PyTorch combo for excellent image model results. All models trained w/ the bits_and_tpu
branch of this codebase.
A big thanks to the TPU Research Cloud (https://sites.research.google/trc/about/) for the compute used in these experiments.
This set includes several novel weights, including EvoNorm-S RegNetZ (C/D timm variants) and ResNet-V2 model experiments, as well as custom pre-activation model variants of RegNet-Y (called RegNet-V) and Xception (Xception-P) models.
Many if not all of the included RegNet weights surpass original paper results by a wide margin and remain above other known results (e.g. recent torchvision updates) in ImageNet-1k validation and especially OOD test set / robustness performance and scaling to higher resolutions.
RegNetsregnety_040
- 82.3 @ 224, 82.96 @ 288regnety_064
- 83.0 @ 224, 83.65 @ 288regnety_080
- 83.17 @ 224, 83.86 @ 288regnetv_040
- 82.44 @ 224, 83.18 @ 288 (timm pre-act)regnetv_064
- 83.1 @ 224, 83.71 @ 288 (timm pre-act)regnetz_040
- 83.67 @ 256, 84.25 @ 320regnetz_040h
- 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head)
resnetv2_50d_gn
- 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm)resnetv2_50d_evos
80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS)regnetz_c16_evos
- 81.9 @ 256, 82.64 @ 320 (EvoNormS)regnetz_d8_evos
- 83.42 @ 256, 84.04 @ 320 (EvoNormS)
xception41p
- 82 @ 299 (timm pre-act)xception65
- 83.17 @ 299xception65p
- 83.14 @ 299 (timm pre-act)
resnext101_64x4d
- 82.46 @ 224, 83.16 @ 288seresnext101_32x8d
- 83.57 @ 224, 84.270 @ 288resnetrs200
- 83.85 @ 256, 84.44 @ 320
Files
rwightman/pytorch-image-models-v0.1-tpu-weights.zip
Files
(15.0 MB)
Name | Size | Download all |
---|---|---|
md5:abfaf7dd6f0407d05ea751d729dc2ebc
|
15.0 MB | Preview Download |
Additional details
Related works
- Is supplement to
- https://github.com/rwightman/pytorch-image-models/tree/v0.1-tpu-weights (URL)