Applying a generic and fast coarse-grained molecular dynamics model to extensively study the mechanical behavior of polymer nanocomposites: supplementary information and dataset
Authors/Creators
- 1. Friedrich-Alexander-Universität Erlangen-Nürnberg
Description
Abstract:
(from [1])
The addition of nano-sized filler particles enhances the mechanical performance of polymers. The resulting properties of the polymer nanocomposite depend on a complex interplay of influence factors such as material pairing, filler size, and content as well as filler-matrix adhesion. As a complement to experimental studies, numerical methods, such as molecular dynamics (MD), facilitate an isolated examination of the individual factors in order to understand their interaction better. However, particle-based simulations are, in general, computationally very expensive, rendering a thorough investigation of nanocomposites’ mechanical behavior both expensive and time-consuming. Therefore, this paper presents a fast coarse-grained MD model for a generic nanoparticle-reinforced thermoplastic. First, we examine the matrix and filler phase individually, which exhibit isotropic elasto-viscoplastic and anisotropic elastic behavior, respectively. Based on this, we demonstrate that the effect of filler size, filler content, and filler-matrix adhesion on the stiffness and strength of the nanocomposite corresponds very well with experimental findings in the literature. Consequently, the presented computationally efficient MD model enables the analysis of a generic polymer nanocomposite. In addition to the obtained insights into the mechanical behavior, the material characterization provides the basis for a future continuum mechanical description, which bridges the gap to the engineering scale.
Contact:
Maximilian Ries
Institute of Applied Mechanics
Friedrich-Alexander-Universität Erlangen-Nürnberg
Egerlandstr. 5
91058 Erlangen
Software:
All MD simulations were performed with LAMMPS [2], version: 29 Oct 2020 / 20201029
Compiled with
Compiler: GNU C++ 4.8.5 20150623 (Red Hat 4.8.5-39) with OpenMP not enabled
C++ standard: C++11
Active compile time flags:
-DLAMMPS_GZIP
-DLAMMPS_SMALLBIG
Installed packages:
CLASS2, KSPACE, MANYBODY, MC, MOLECULE, MPIIO, OPT, VORONOI, USER-INTEL, USER-MISC, USER-MOLFILE, USER-NETCD
Polymer and polymer composite samples generated with self-avoiding random-walk algorithm [3]
Post-processing Matlab R2019b
Evaluation of polymer entanglements with Z1-Algorithm [4]
License:
Creative Commons Attribution 4.0 International
Context:
Data set supplementing journal paper:
[1] M. Ries, J. Seibert, P. Steinmann, S. Pfaller. “Applying a generic and fast coarse-grained molecular dynamics model to extensively study the mechanical behavior of polymer nanocomposites”, Express Polymer Letters, 2022, 16.
This dataset contains the results presented in [1] and the necessary data to obtain those as well as supplementary information.
Content:
supplementary material:
supplementary_information.pdf
data:
folder names vary depending on the context, explained in the following:
01_matrix
-
01_equilibration
sample equilibration to different temperatures
nomenclature: equil_<chains>-<chain_atoms>-box_<initial_box_length>-min_<SARW_distance>-angle_<SARW_angle>-T_<final_temperature>[-<batch_ID>]-
chains: 200
-
chain_atoms: 200
-
initial_box_length: 100
-
SARW_distance: 0.9
-
SARW_angle: 50
-
final_temperature: 0.1-1.0
-
batch_ID: 2-5
-
-
02_temperature_dependence
uniaxial tension simulations to identify temperature dependence
nomenclature: 01_UT_<chains>-<chain_atoms>-box_<initial_box_length>-min_<SARW_distance>-angle_<SARW_angle>-T_<final_temperature>-
chains: 200
-
chain_atoms: 200
-
initial_box_length: 100
-
SARW_distance: 0.9
-
SARW_angle: 50
-
final_temperature: 0.1-1.0
-
-
03_directional_dependence
uniaxial tension simulations to prove isotropy in Y and Z direction; X direction in 04_rate_dependence
nomenclature: 03_UT_<chains>-<chain_atoms>-box_<initial_box_length>-min_<SARW_distance>-angle_<SARW_angle>-T_<final_temperature>-rate_<strain_rate>-<batchID>-
chains: 200
-
chain_atoms: 200
-
initial_box_length: 100
-
SARW_distance: 0.9
-
SARW_angle: 50
-
final_temperature: 0.3
-
strain_rate: 5E-5
-
batchID: 1-5
-
-
04_rate_dependence
uniaxial tension simulations to identify strain rate dependence
nomenclature: 03_UT_<chains>-<chain_atoms>-box_<initial_box_length>-min_<SARW_distance>-angle_<SARW_angle>-T_<final_temperature>-rate_<strain_rate>[-<batchID>]-
chains: 200
-
chain_atoms: 200
-
initial_box_length: 100
-
SARW_distance: 0.9
-
SARW_angle: 50
-
final_temperature: 0.3
-
strain_rate: 5E-4, 5E-5, 5E-6
-
batchID: 1-5
-
-
05_cyclic_loading
sinusoidal uniaxial deformation
nomenclature: 05_UT_<chains>-<chain_atoms>-box_<initial_box_length>-min_<SARW_distance>-angle_<SARW_angle>-T_<final_temperature>-rate_<strain_rate>-sin_<strain_amplitude>-
chains: 200
-
chain_atoms: 200
-
initial_box_length: 100
-
SARW_distance: 0.9
-
SARW_angle: 50
-
final_temperature: 0.3
-
strain_rate: 5E-4
-
strain_amplitude: 0.01, 0.05, 0.15, 0.2
-
-
06_relaxation
relaxation subsequent to time-proportional deformation
nomenclature: 07_UT_<chains>-<chain_atoms>-box_<initial_box_length>-min_<SARW_distance>-angle_<SARW_angle>-T_<final_temperature>-rate_<strain_rate>-sin_<strain_amplitude>_relax-
chains: 200
-
chain_atoms: 200
-
initial_box_length: 100
-
SARW_distance: 0.9
-
SARW_angle: 50
-
final_temperature: 0.3
-
strain_rate: 5E-4
-
strain_amplitude: 0.01, 0.05, 0.15, 0.2
-
-
07_simple_shear
time-proportional simple shear deformation with different strain rates
nomenclature: SS_P2VPSi-rate_<strain_rate>-<batchID>-
strain_rate: 5E-4, 5E-5, 5E-6
-
batchID: 1-5
-
-
08_large_deformation
uniaxial deformation up to 100% strain
nomenclature: 02_UT_<chains>-<chain_atoms>-box_<initial_box_length>-min_<SARW_distance>-angle_<SARW_angle>-T_<final_temperatur>-strain_<max_strain>-
chains: 200
-
chain_atoms: 200
-
initial_box_length: 100
-
SARW_distance: 0.9
-
SARW_angle: 50
-
final_temperature: 0.3
-
max_strain: 1
-
02_filler
-
01_Silica_equilibration
sample equilibration -
02_time_proportional
time-proportional uniaxial and simple shear tests
nomenclature: Silica_BV-<loadcase>_<direction>-strain_<max_strain>-rate_<strain_rate>-
loadcase: uniaxial tension (UT), simple shear (SS)
-
max_strain: 0.1
-
direction: X, Y, Z (UT); XY, XZ, YZ (SS)
-
strain_rate: 5E-4, 5E-5, 5E-6
-
-
03_time_periodic
time-periodic uniaxial and simple shear tests
nomenclature: Silica_BV-<loadcase>_<direction>_sin-ampl_<strain_amplitude>-rate_<max_strain_rate>-
loadcase: uniaxial tension (UT), simple shear (SS)
-
direction: X, Y, Z (UT); XY, XZ, YZ (SS)
-
strain_amplitude: 0.025
-
03_composite
-
01_equilibration
sample equilibration
nomenclature: equil_P2VPSi-rNP_<filler_radius>-nNP_<filler_number>-<batchID>-
filler_radius: 2.5-10.0
-
filler_number: 1-160 (depending on filler_radius)
-
batchID: 1-5
-
-
02_uniaxial-tension
uniaxial tension simulations
nomenclature: UT_P2VPSi-rNP_<filler_radius>-nNP_<filler_number>-<batchID>-
filler_radius: 2.5-10.0
-
filler_number: 1-160 (depending on filler_radius)
-
batchID: 1-5
-
-
03_filler-maxtrix-adhesion
equilibration and uniaxial deformation of samples with mid and weak filler-matrix adhesion (for strong adhesion see 01_equilibration and 02_uniaxial-tension
nomenclature: see above -
04_IP_equilibration
equilibration of samples to evaluate the microstructure for neat polymer and composites with filler radius 2.5-7.5
nomenclature: P2VPSi-<chains>x<chain_atoms>_rNP_<filler_radius>-nNP_<filler_number>_pos_<filler_pos>-<batchID>-
chains: 200
-
chain_atoms: 200
-
filler_radius: 0 (neat), 2.5, 5.0, 7.5
-
filler_number: 0 (neat), 1
-
batchID: 1-20
-
Each simulation directory contains:
-
lammps input file (*.in) of the specific simulation
-
data file (*.data) containing the initial sample configuration
-
input.prm: input parameters of the specific simulation (read by the input file)
-
meta.info: meta data of the specific simulation run
-
LAMMPS_out:
simulation results (lammps thermo_out) in tabulated form, an overview of columns is given below-
thermo_out.Dat: raw output
-
thermo_out_SG.Dat: smoothed output (Savitzky-Golay filter)
-
thermo_out_STD.Dat: standard deviation of raw output
-
Output quantities (columns of *.Dat files):
Please note that the normalized Lennard-Jones unit set is used, so all quantities are normalized to fundamental mass, length, energy, time and the Boltzmann constant. Thus all entries are unitless [1].
-
Step: time step
-
Time: time
-
TotEng: total energy
-
PotEng: potential energy
-
KinEng: kinetic energy
-
E_pair: pair energy
-
E_bond: bond energy
-
E_angle: angle energy
-
E_dihed: dihedral energy
-
Temp: temperature
-
Press: hydrostatic pressure
-
Pxx: xx component of pressure tensor
-
Pyy: yy component of pressure tensor
-
Pzz: zz component of pressure tensor
-
Pxy: xy component of pressure tensor
-
Pxz: xz component of pressure tensor
-
Pyz: yz component of pressure tensor
-
Volume: volume of simulation box
-
Lx: box length in x direction
-
Ly: box length in y direction
-
Lz: box length in z direction
-
Density: density
-
c_RG: radius of gyration scalar
-
c_RG[1]: squared radius of gyration tensor (xx component)
-
c_RG[2]: squared radius of gyration tensor (yy component)
-
c_RG[3]: squared radius of gyration tensor (zz component)
-
c_RG[4]: squared radius of gyration tensor (xy component)
-
c_RG[5]: squared radius of gyration tensor (xz component)
-
c_RG[6]: squared radius of gyration tensor (yz component)
-
c_bondave[1]: bond energy averaged over all atoms
-
c_bondave[2]: bond distance averaged over all atoms
-
c_bondave[3]: squared bond distance averaged over all atoms
-
c_angleave[1]: angle energy averaged over all atoms
-
c_angleave[2]: angle averaged over all atoms degree
-
c_angleave[3]: cosine of angle
-
c_angleave[4]: squared cosine of angle
-
c_MSD[1]: mean squared displacement x-direction
-
c_MSD[2]: mean squared displacement y-direction
-
c_MSD[3]: mean squared displacement z-direction
-
c_MSD[4]: total mean squared displacement
-
c_COM[1]: x coordinate of center of mass
-
c_COM[2]: y coordinate of center of mass
-
c_COM[3]: z coordinate of center of mass
-
v_strain_xx: xx component of engineering strain tensor
-
v_strain_yy: yy component of engineering strain tensor
-
v_strain_zz: zz component of engineering strain tensor
-
v_vMisesequivstress: von Mises equivalent stress
-
v_Cauchy_xx: xx component of stress tensor
-
v_Cauchy_yy: yy component of stress tensor
-
v_Cauchy_zz: zz component of stress tensor
-
v_Cauchy_xy: xy component of stress tensor
-
v_Cauchy_xz: xz component of stress tensor
-
v_Cauchy_yz: yz component of stress tensor
-
v_strain_xy: xy component of engineering strain tensor
-
v_strain_xz: xz component of engineering strain tensor
-
v_strain_yz: yz component of engineering strain tensor
References:
[1] M. Ries, J. Seibert, P. Steinmann, S. Pfaller. “Applying a generic and fast coarse-grained molecular dynamics model to extensively study the mechanical behavior of polymer nanocomposites”, Express Polymer Letters, 2022, 16.
[2] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of computational physics, 1995, 117, 1-19.
[3] A. P. Thompson et al., “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Computer Physics Communications, vol. 271, p. 108171, 2022.
[4] M. Ries, V. Dötschel, J. Seibert, S. Pfaller. “A self-avoiding random walk algorithm (SARW) for generic thermoplastic polymers and nanocomposites”, Zenodo, 2022. https://doi.org/10.5281/zenodo.6245699
Notes
Files
data.zip
Additional details
Related works
- Is supplement to
- Journal article: 10.3144/expresspolymlett.2022.94 (DOI)