Published September 4, 2020 | Version v1
Journal article Open

Revealing community assembly through barcoding: Mediterranean butterflies and dispersal variation

  • 1. Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), La Laguna, Spain
  • 2. Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), La Laguna, Spain School of Doctoral and Postgraduate Studies, University of La Laguna, La Laguna, Spain

Description

How long is 3 km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13196. Biotic and abiotic factors can shape geographical patterns of genetic variation within species, but few studies have addressed how this might generate common patterns at the level of communities of species. Scalercio et al. (2020) have combined mtDNA sequence data and life-history traits, to reveal a repeated pattern of genetic structure between Sicilian and southern Italian butterfly populations, which are separated by only 3 km of ocean. They reveal how intrinsic species traits and extrinsic environmental constraints explain this pattern, demonstrating an important role for wind. Moreover, the inclusion of almost 8,000 georeferenced sequences reveals that, in spite of also being present in southern Italy, almost half of Sicilian butterfly species are more closely related to populations from other parts of Europe, Asia or North Africa. We provide further discussion on the biogeographic barrier they identify, and the potential of  community-level DNA barcoding

Files

Journal of Animal Ecology - 2020 - Emerson - Revealing community assembly through barcoding Mediterranean butterflies and.pdf

Additional details

Funding

European Commission
iBioGen – Twinning for European excellence in Island Biodiversity Genomics 810729

References

  • Andújar, C., Creedy, T., Arribas, P., López, H., Salces-Castellano, A., Pérez-Delgado, A., … Emerson, B. C. (2020). Validated removal of nuclear pseudogenes and sequencing artefacts from mitochondrial metabarcode data. bioRxiv, Retrieved from https://biorx iv.org/cgi/ conte nt/short/ 2020.06.17.157347v1
  • Antonioli, F., Lo Presti, V., Morticelli, M. G., Bonfiglio, L., Mannino, M. A., Palombo, M. R., … Tonielli, R. (2016). Timing of the emergence of the Europe-Sicily bridge (40–17 cal ka BP) and its implications for the spread of modern humans. Geological Society Special Publication, 411, 111–144. https://doi.org/10.1144/SP411.1
  • Arbogast, B. S., & Kenagy, G. J. (2001). Comparative phylogeography as an integrative approach to historical biogeography. Journal of Biogeography, 28, 819–825. https://doi.org/10.1046/j.1365-2699. 2001.00594.x
  • Arribas, P., Andújar, C., Salces-Castellano, A., Emerson, B. C., & Vogler, A. P. (2020). The limited spatial scale of dispersal in soil arthropods revealed with whole-community haplotype-level metabarcoding. Molecular Ecology, https://onlin elibr ary.wiley.com/doi/10.1111/mec. 15591
  • Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., … Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522. https://doi. org/10.1146/annur ev.es.18.110187.002421
  • Balletto, E., Cassulo, L. A., & Bonelli, S. (2014). An annotated checklist of the Italian butterflies and skippers (Papilionoidea, Hesperiioidea). Zootaxa, 3853, 1–114. https://doi.org/10.11646/ zoota xa.3853.1.1
  • Baselga, A., Fujisawa, T., Crampton-Platt, A., Bergsten, J., Foster, P. G., Monaghan, M. T., & Vogler, A. P. (2013). Whole-community DNA barcoding reveals a spatio-temporal continuum of biodiversity at species and genetic levels. Nature Communications, 4. https://doi. org/10.1038/ncomm s2881
  • Baselga, A., Gómez-Rodríguez, C., & Vogler, A. P. (2015). Multihierarchical macroecology at species and genetic levels to discern neutral and non-neutral processes. Global Ecology and Biogeography, 24, 873–882. https://doi.org/10.1111/geb.12322
  • Blanchet, S., Prunier, J. G., & De Kort, H. (2017). Time to go bigger: Emerging patterns in macrogenetics. Trends in Genetics, 33, 579–580. https://doi.org/10.1016/j.tig.2017.06.007
  • Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 6491–6495. https://doi. org/10.1073/pnas.91.14.6491
  • Craft, K. J., Pauls, S. U., Darrow, K., Miller, S. E., Hebert, P. D. N., Helgen, L. E., … Weiblen, G. D. (2010). Population genetics of ecological communities with DNA barcodes: An example from New Guinea Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 107, 5041–5046. https://doi.org/10.1073/ pnas.09130 84107
  • Ehlers, J., Gibbard, P. L., & Hughes, P. D. (2011). Quaternaty glaciations – Extent and chronology: A closer look. The Netherlands; UK: Elsevier.
  • Elbrecht, V., Vamos, E. E., Steinke, D., & Leese, F. (2018). Estimating intraspecific genetic diversity from community DNA metabarcoding data. PeerJ, 6, e4644. https://doi.org/10.7717/peerj.46442/ 13
  • Emerson, B. C., Casquet, J., López, H., Cardoso, P., Borges, P. A. V., Mollaret, N., … Thébaud, C. (2017). A combined field survey and molecular identification protocol for comparing forest arthropod biodiversity across spatial scales. Molecular Ecology Resources, 17, 694–707. https://doi.org/10.1111/1755-0998.12617
  • Gillespie, R. G., Baldwin, B. G., Waters, J. M., Fraser, C., Nikula, R., & Roderick, G. K. (2012). Long-distance dispersal – A framework for hypothesis testing. Trends in Ecology & Evolution, 27, 47–56. https:// doi.org/10.1016/j.tree.2011.08.009
  • Gómez-Rodríguez, C., Miller, K. E., Castillejo, J., Iglesias-Piñero, J., & Baselga, A. (2019). Understanding dispersal limitation through the assessment of diversity patterns across phylogenetic scales below the species level. Global Ecology and Biogeography, 28, 353–364. https://doi.org/10.1111/geb.12857
  • Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. (2009). Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genetics, 5, e1000695. https://doi.org/10.1371/journ al.pgen.1000695
  • Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276. https://doi.org/10.1006/bijl.1996.0035
  • Hewitt, G. M. (2000). The genetic legacy of the quaternary ice ages. Nature, 405, 907–913. https://doi.org/10.1038/35016000
  • Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., … Yoder, A. D. (2010). Phylogeography's past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54, 291–301. https://doi.org/10.1016/ j.ympev.2009.09.016
  • Incarbona, A., Agate, M., Arisco, G., Bonomo, S., Buccheri, G., Di Patti, C., … Zarcone, G. (2010). Environment and Climate in Sicily over the last 20,000 years. Italian Journal of Quaternary Sciences, 23, 21–36.
  • Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J.-C., Joos, F., Masson- Delmonte, V., … Zhang, D. (2007). Palaeoclimate. Cambridge, UK and New York, NY: Cambridge University Press.
  • Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20, PA1003. https://doi.org/10.1029/2004P A001071
  • Múrria, C., Rugenski, A. T., Whiles, M. R., & Vogler, A. P. (2015). Longterm isolation and endemicity of Neotropical aquatic insects limit the community responses to recent amphibian decline. Diversity and Distributions, 21, 938–949. https://doi.org/10.1111/ddi. 12343
  • Oaks, J. R. (2019). Full Bayesian comparative phylogeography from genomic data. Systematic Biology, 68, 371–395. https://doi.org/10.1093/ sysbi o/syy063
  • Overcast, I., Emerson, B. C., & Hickerson, M. J. (2019). An integrated model of population genetics and community ecology. Journal of Biogeography, 46, 816–829. https://doi.org/10.1111/jbi.13541
  • Papadopoulou, A., Anastasiou, I., Spagopoulou, F., Stalimerou, M., Terzopoulou, S., Legakis, A., & Vogler, A. P. (2011). Testing the species- genetic diversity correlation in the Aegean archipelago: Toward a haplotype-based macroecology? The American Naturalist, 178(241– 255), https://doi.org/10.1086/660828
  • Salces-Castellano, A., Patiño, J., Alvarez, N., Andújar, C., Arribas, P., Braojos-Ruiz, J. J., … Emerson, B. C. (2020). Climate drives community- wide divergence within species over a limited spatial scale: Evidence from an oceanic island. Ecology Letters, 23, 305–315. https://doi.org/10.1111/ele.13433
  • Scalercio, S., Cini, A., Menchetti, M., Vodă, R., Bonelli, S., Bordoni, A., … Dapporto, L. (2020). How long is 3 km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13196
  • Turon, X., Antich, A., Palacín, C., Præbel, K., & Wangensteen, O. S. (2019). From metabarcoding to metaphylogeography: Separating the wheat from the chaff. Ecological Applications, 30, e02036. https://doi. org/10.1002/eap.2036
  • Vellend, M., & Geber, M. A. (2005). Connections between species diversity and genetic diversity. Ecology Letters, 8, 767–781. https://doi. org/10.1111/j.1461-0248.2005.00775.x
  • Xue, A. T., & Hickerson, M. J. (2020). Comparative phylogeographic inference with genome-wide data from aggregated population pairs. Evolution, 74, 808–830. https://doi.org/10.1111/evo.13945