Published February 25, 2022 | Version v0
Dataset Open

Cellpose models for Label Prediction from Brightfield and Digital Phase Contrast images

  • 1. EPFL SV PTECH PTBIOP

Description

Name: Cellpose models for Brightfield and Digital Phase Contrast images

Data type: Cellpose models trained via transfer learning from the ‘nuclei’ and ‘cyto2’ pretrained model with additional Training Dataset . Includes corresponding csv files with 'Quality Control' metrics(§) (model.zip).

Training Dataset: Light microscopy (Digital Phase Contrast or Brightfield) and automatic annotations (nuclei or cyto) (https://doi.org/10.5281/zenodo.6140064)

Training Procedure: The cellpose models were trained using cellpose version 1.0.0 with GPU support (NVIDIA GeForce K40) using default settings as per the Cellpose documentation . Training was done using a Renku environment (renku template).

 

Command Line Execution for the different trained models

nuclei_from_bf:

cellpose --train --dir 'data/train/' --test_dir 'data/test/' --pretrained_model nuclei  --img_filter _bf --mask_filter _nuclei --chan 0 --chan2 0 --use_gpu --verbose

cyto_from_bf:

cellpose --train --dir 'data/train/' --test_dir 'data/test/' --pretrained_model cyto2 --img_filter _bf --mask_filter _cyto --chan 0 --chan2 0 --use_gpu --verbose

 

nuclei_from_dpc:

cellpose --train --dir 'data/train/' --test_dir 'data/test/' --pretrained_model nuclei  --img_filter _dpc --mask_filter _nuclei --chan 0 --chan2 0 --use_gpu --verbose

cyto_from_dpc:

cellpose --train --dir 'data/train/' --test_dir 'data/test/' --pretrained_model cyto2 --img_filter _dpc --mask_filter _cyto --chan 0 --chan2 0 --use_gpu --verbose

 

nuclei_from_sqrdpc:

cellpose --train --dir 'data/train/' --test_dir 'data/test/' --pretrained_model nuclei --img_filter _sqrdpc --mask_filter _nuclei --chan 0 --chan2 0 --use_gpu --verbose

cyto_from_sqrdpc:

cellpose --train --dir 'data/train/' --test_dir 'data/test/' --pretrained_model cyto2 --img_filter _sqrdpc --mask_filter _cyto --chan 0 --chan2 0 --use_gpu --verbose

 

NOTE (§): We provide a notebook for Quality Control, which is an adaptation of the "Cellpose (2D and 3D)" notebook from ZeroCostDL4Mic .

NOTE: This dataset used a training dataset from the Zenodo entry(https://doi.org/10.5281/zenodo.6140064) generated from the “HeLa “Kyoto” cells under the scope”  dataset Zenodo entry(https://doi.org/10.5281/zenodo.6139958) in order to automatically generate the label images.

NOTE: Make sure that you delete the “_flow” images that are auto-computed when running the training. If you do not, then the flows from previous runs will be used for the new training, which might yield confusing results.

 

Files

models.zip

Files (147.6 MB)

Name Size Download all
md5:96960e642954642f660385469cefa96d
147.5 MB Preview Download
md5:be03062e496ddfb9cfafff086d592f95
31.6 kB Preview Download