Published February 17, 2023 | Version v1
Other Open

Selection and evolution at the community level using common garden data

  • 1. Northern Arizona University


A key issue in evolutionary biology is whether selection acting at levels higher than the individual can cause evolutionary change. If it can, then conceptual and empirical studies must consider how selection operates at multiple levels of biological organization. Here, we test the hypothesis that estimates of broad-sense community heritability, H2C, can be used to predict the evolutionary response by community-level phenotypes when community-level selection is imposed. Using an approach informed by classic quantitative genetics, we made three predictions. First, when we imposed community-level selection, we expected a significant change in the average phenotype of arthropod communities associated with individual tree genotypes [we imposed selection by favoring high and low NMDS (nonmetric multidimensional scaling) scores that reflected differences in arthropod species richness, abundance and composition]. Second, we expected H2C to predict the magnitude of the community-level response. Third, we expected no significant change in average NMDS scores with community-level selection imposed at random. We tested these hypotheses using three years of common garden data for 102 species comprising the arthropod communities, associated with nine clonally replicated Populus angustifolia genotypes. Each of our predictions were met. We conclude that estimates of H2C account for the resemblance among communities sharing common ancestry, the persistence of community composition over time, and the outcome of selection when it occurs at the community level. Our results provide a means for exploring how this process leads to large-scale community evolutionary change, and they identify the circumstances in which selection may routinely act at the community level.


The data from Keith et al. (2010, attached) consists of abundance data from an 18-yr-old common garden with replicated clones of nine different Populus angustifolia genotypes. All trees planted within the common garden were collected from a single interbreeding population. Trees were identified using molecular markers that allowed exclusion of hybrids and inclusion of genetic variants characteristic of "pure" P. angustifolia. Genotypes represented in the common garden had been haphazardly selected from trees growing along the Weber River in northern Utah, USA and were planted in a haphazard design. Nine tree genotypes with four to seven replicates each were selected from existing stocks, yielding a total of 44 trees, whose average height was 10-15m.

The community heritability calculator is an Excel spreadsheet that can be used to estimate broad sense community heritability from analysis of variance output using one-dimensional NMDS scores on community abundance data.

Funding provided by: National Science Foundation
Crossref Funder Registry ID:
Award Number: FIBR, MRI, Macrosystems Biology, Southwest Experimental Garden Array (SEGA)

Funding provided by: Ogden Nature Center*
Crossref Funder Registry ID:
Award Number:


Files (79.6 kB)

Name Size Download all
38.7 kB Download
41.0 kB Download

Additional details

Related works

Is derived from
10.5061/dryad.3bk3j9kmr (DOI)