Orthogonalization of far-field detection in tapered optical fibers for depth-selective fiber photometry in brain tissue
- 1. Marco
- 2. Antonio
- 3. Cinzia
- 4. Filippo
- 5. Barbara
- 6. Bernardo L.
- 7. Massimo
- 8. Ferruccio
Description
The field of implantable optical neural interfaces has recently enabled the interrogation of neural circuitry with both cell-type specificity and spatial resolution in sub-cortical structures of the mouse brain. This generated the need to integrate multiple optical channels within the same implantable device, motivating the requirement of multiplexing and demultiplexing techniques. In this, we present an orthogonalization method of the far-field space to introduce mode-division demultiplexing for collecting fluorescence from implantable tapered optical fibers. This is achieved by exploiting the correlation between the transversal wavevector ᵅ8;ᵆ1; of the guided light and the position of the fluorescent sources along the implant, an intrinsic property of the taper waveguide. On these bases, we define a basis of orthogonal vectors in the Fourier space, each of which is associated to a depth along the taper, to simultaneously detect and demultiplex the collected signal when the probe is implanted in fixed mouse brain tissue. Our approach complements existing multiplexing techniques used in silicon-based photonics probes with the advantage of a significant simplification of the probe itself.
Notes
Files
Bianco et al. - 2022 - Orthogonalization of far-field detection in tapere.pdf
Files
(2.5 MB)
Name | Size | Download all |
---|---|---|
md5:5d27f474147098c90b33ab8b425b86d1
|
2.5 MB | Preview Download |
Additional details
Related works
- Is previous version of
- 10.1063/5.0073594 (DOI)
Funding
- European Commission
- MODEM – Multipoint Optical DEvices for Minimally invasive neural circuits interface 677683
- European Commission
- BrainBIT – All-optical brain-to-brain behaviour and information transfer 692943
- European Commission
- DEEPER – DEEP BRAIN PHOTONIC TOOLS FOR CELL-TYPE SPECIFIC TARGETING OF NEURAL DISEASES 101016787
- National Institutes of Health
- Controlling the spatial extent of light-based monitoring and manipulation of neural activity in vivo 1UF1NS108177-01
- European Commission
- NanoBRIGHT – BRInGing nano-pHoTonics into the brain 828972