Published December 15, 2021 | Version v1
Journal article Open

Maximum entropy snapshot sampling for reduced basis modelling

  • 1. Bergische Universität Wuppertal
  • 2. STMicroelectronics

Description

Purpose – The maximum entropy snapshot sampling (MESS) method aims to reduce the computational cost required for obtaining the reduced basis for the purpose of model reduction. Hence, it can significantly reduce the original system dimension whilst maintaining an adequate level of accuracy. The purpose of this paper is to show how these beneficial results are obtained.
Design/methodology/approach – The so-called MESS method is used for reducing two nonlinear circuit models. The MESS directly reduces the number of snapshots by recursively identifying and selecting the snapshots that strictly increase an estimate of the correlation entropy of the considered systems. Reduced bases are then obtained with the orthogonal-triangular decomposition.
Findings – Two case studies have been used for validating the reduction performance of the MESS. These numerical experiments verify the performance of the advocated approach, in terms of computational costs and accuracy, relative to gappy proper orthogonal decomposition.
Originality/value – The novel MESS has been successfully used for reducing two nonlinear circuits: in particular, a diode chain model and a thermal-electric coupled system. In both cases, the MESS removed unnecessary data, and hence, it reduced the snapshot matrix, before calling the QR basis generation routine. As a result, the QR-decomposition has been called on a reduced snapshot matrix, and the offline stage has been significantly scaled down, in terms of central processing unit time.

Files

10-1108_COMPEL-02-2021-0050.pdf

Files (450.5 kB)

Name Size Download all
md5:3fbb291fb30a32f12f3e2542caedc478
450.5 kB Preview Download

Additional details

Funding

ROMSOC – Reduced Order Modelling, Simulation and Optimization of Coupled systems 765374
European Commission