Sun global Alfvén resonance from decade-scale dynamics of N–S separated fast solar wind
Description
The Sun reveals itself in the 386–2.439-nHz (1-mo–13-yr) band of polar (φSun>|70°|) fast (>700 km s−1) solar wind’s decade-scale dynamics as a globally completely vibrating/resonating magnetoalternator and not just a proverbial engine anymore. Thus North–South separation of hourly-averaged, 1994–2008 Ulysses samplings of the <10 nT polar winds in ~1.6·107 –2.5·109-erg energies revealed spectral signatures of a ≥99%-significant Sun-borne global differential resonant activity, verified across disparate data. Confirming the Alfvén’s view on a Sun globally resonating under its PS=~11-yr Schwabe mode, this Alfvén (a-mode) resonance (AR) comprising Rossby-like r-modes and cavity-confined R-modes, aP= rP ∪ RP, is governed by PS at a remarkable ~25% field variance northside, a ~9-yr degeneration of PS at ~20% southside, and a ~10-yr degeneration of PS under equatorial mixing. While composing the PG∈~(88–100-yr) Gleissberg cycle, the 9–10–11-yr sector coupling also co-triggers AR, Pi=PS/i, i=2…n, n ∈ א, imprinted in the fast winds at least to the order n=100. The overwhelming (anisotropy moderating) and deterministic (with Φ>>12 fidelity) AR is accompanied by a most useful symmetrical antiresonance, P-, whose both N/S tailing harmonics P-17 are the well-known 154-day Rieger period, from which the couplings-freed Rieger resonance sprouts as wind’s own. Thus the Sun is a typical, ~3-dB-attenuated ring system of differentially rotating and contrarily vibrating conveyor belts and layers, with a continuous spectrum of modes, patterns complete in both parities, and resolution better than 81.3 nHz (S) and 55.6 nHz (N) in lowermost frequencies (≲2μHz in most modes). Unlike a resonating car engine that tries but fails to separate its fixed casing, the resonating free Sun exhausts the wind in a shake-off alongside the rotational axis. AR advances standard stellar models, agrees with laboratory experiments for enhanced studies of the Sun interior and heliosphere, and can explain the million-degree corona and solar abundance.
Notes (English)
Files
article.pdf
Files
(2.3 MB)
Name | Size | Download all |
---|---|---|
md5:16a7226507516f1a5e652818b37b1571
|
2.1 MB | Preview Download |
md5:521eb76bc10c7e58f345abfcde0d928f
|
218.4 kB | Preview Download |
Additional details
Identifiers
- URL
- https://n2t.net/ark:/88439/x080008
- ARK
- ark:/88439/x080008
- arXiv
- arXiv:2301.07219
Related works
- Is published in
- Journal article: https://n2t.net/ark:/88439/x080008 (URL)
References
- Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F. (2012) Is there a planetary influence on solar activity? Astron. Astroph. 548:A88. https://doi.org/10.1051/0004-6361/201219997
- Alfvén, H. (1943) On Sunspots and the Solar Cycle. Arkiv f. Mat., Astron. o. Fys. 29A(12):1–17. https://ui.adsabs.harvard.edu/abs/1943ArMAF..29R...1A
- Alfvén, H. (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150(3805):405–406. https://doi.org/10.1038%2F150405d0
- Alfvén, H. (1948) Cosmical electrodynamics. Oxford University Press (2nd ed. Clarendon Press, 1963), 228 pp. ISBN 9780198512011
- Asplund, M., Grevesse, N., Sauval, A.J., Scott, P. (2009) The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47(1):481–522. https://doi.org/10.1146/annurev.astro.46.060407.145222
- Bai T. and Cliver E. W. (1990) A 154 day periodicity in the occurrence rate of proton flares. Astrophys. J. 363:299–309. https://doi.org/10.1086/169342
- Bellan, P.M. (1996) Mode conversion into non-MHD waves at the Alfvén layer: The case against the field line resonance concept. J. Geophys. Res. 101(A11):24887–24898. https://doi.org/10.1029/96JA02253
- Bellan, P.M. (1994) Alfvén 'resonance' reconsidered: Exact equations for wave propagation across a cold inhomogeneous plasma. Phys. Plasmas 1:3523–3541. https://doi.org/10.1063/1.870888
- Bergemann M., Serenelli A. (2014) Solar Abundance Problem. In: Niemczura E., Smalley B., Pych W. (Eds.) Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-06956-2_21
- Borovsky, J.E. (2018) The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1. J. Atmo. Solar-Terr. Phys. 177:2-11. https://doi.org/10.1016/j.jastp.2017.03.014
- Bose, S., Nagaraju, K. (2018) On the variability of the Solar Mean Magnetic Field: contributions from various magnetic features on the surface of the Sun. Astrophys. J. 862:35. https://doi.org/10.3847/1538-4357/aaccf1
- Brooks, D., Ugarte-Urra, I., Warren, H. (2015) Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6:5947. https://doi.org/10.1038/ncomms6947
- Bruno, R., Carbone, V. (2013) The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10:2. https://doi.org/10.12942/lrsp-2013-2
- Campos, L. (1977) On the generation and radiation of magneto-acoustic waves. J. Fluid Mech. 81(3):529–549. https://doi.org/10.1017/S0022112077002213
- Cane, H.V., Richardson, I.G., von Rosenvinge, T.T. (1998) Interplanetary magnetic field periodicity of ∼153 days. Geophys. Res. Lett. 25(24):4437–4440. https://doi.org/10.1029/1998GL900208
- Carbonell, M., Oliver, R., Ballester, J.L. (1992) Power spectra of gapped time series: a comparison of several methods. Astron. & Astrophys. 264:350–360. https://ui.adsabs.harvard.edu/#abs/1992A&A...264..350C
- Choi, K.-E., Lee, D.-Y. (2019) Origin of solar rotational periodicity and harmonics identified in the Interplanetary Magnetic Field Bz component near the Earth during solar cycles 23 and 24. Sol. Phys. 294:44. https://doi.org/10.1007/s11207-019-1433-7
- Cole, M.O.T (2008) On stability of rotordynamic systems with rotor–stator contact interaction. Proc. R. Soc. A. 4643353–3375. https://doi.org/10.1098/rspa.2008.0237
- Danilović, S., Vince, I., Vitas, N., Jovanović, P. (2005) Time series analysis of long term full disk observations of the Mn I 539.4 nm solar line. Serb. Astron. J. 170:79–88. https://doi.org/10.2298/SAJ0570079D
- Davila, J.M. (1987) Heating of the solar corona by the resonant absorption of Alfven waves. Astrophys. J. 317:514–521. https://ui.adsabs.harvard.edu/#abs/1987ApJ...317..514D
- Den Hartog, J.P. (1985) Mechanical Vibrations. Dover Publications, New York, United States. ISBN 0486647854
- Deng, L.H. Li, B., Xiang, Y.Y., Dun, G.T. (2014) On mid-term periodicities of high-latitude solar activity. Adv. Space Res. 54(1):125–131. https://doi.org/10.1016/j.asr.2014.03.006
- Deubner, F.-L., Gough, D. (1984) Helioseismology: Oscillations as a Diagnostic of the Solar Interior. Ann. Rev. Astron. Astrophys. 22(1):593–619. https://doi.org/10.1146/annurev.aa.22.090184.003113
- Dimitropoulou, M., Moussas, X., Strintzi, D. (2008) Enhanced Rieger type periodicities' detection in X-ray solar flares and statistical validation of Rossby waves' existence. Proc. Int. Astron. Union 4(S257):159–163. https://doi.org/10.1017/S1743921309029226
- Dzhalilov, N.S., Staude, J., Oraevsky, V.N. (2002) Eigenoscillations of the differentially rotating Sun - I. 22-year, 4000-year, and quasi-biennial modes. Astron. Astrophys. 384(1):282–298. https://doi.org/10.1051/0004-6361:20011836
- Ewins, D.J. (1995) Modal Testing: Theory and Practice. Research Studies Press Ltd., Taunton, England, ISBN 0863800173. John Wiley & Sons lnc., ISBN 04719904724. 313 pp.
- Forgacs-Dajka, E., Borkovits, T. (2007) Searching for mid-term variations in different aspects of solar activity – looking for probable common origins and studying temporal variations of magnetic polarities. Mon. Not. R. Astron. Soc. 374:282–291. https://doi.org/doi:10.1111/j.1365-2966.2006.11167.x
- Fossat, E., Boumier, P., Corbard, T., Provost, J., Salabert, D., Schmider, F.X., Gabriel, A.H., Grec, G., Renaud, C., Robillot, J.M., Roca-Cortés, T., Turck-Chièze, S., Ulrich, R.K., Lazrek, M. (2017) Asymptotic g modes: Evidence for a rapid rotation of the solar core. Astron. Astrophys. 604:A40. https://doi.org/10.1051/0004-6361/201730460
- Goedbloed, J.P., Lifschitz, A. (1995) Comment on "Alfvén 'resonance' reconsidered: Exact equations for wave propagation across a cold inhomogeneous plasma" [Phys. Plasmas 1:3523 (1994)]. Phys. Plasmas 2:3550–3551. https://doi.org/10.1063/1.871471
- Gough, D. (1995) Waves in the wind. Nature 376:120–121. https://doi.org/10.1038/376120a0
- Grail, R., Coles, W., Klinglesmith, M., Breen, A.R., Williams, P.J.S., Markkanen, J., Esser, R. (1996) Rapid acceleration of the polar solar wind. Nature 379:429–432. https://doi.org/10.1038/379429a0
- Grant, S.D.T., Jess, D.B., Zaqarashvili, T.V. Beck, C., Socas-Navarro, H., Aschwanden, M.J., Keys, P.H., Christian, D.J., Houston, S.J., Hewitt, R.L. (2018) Alfvén wave dissipation in the solar chromosphere. Nature Phys. 14:480–483. https://doi.org/10.1038/s41567-018-0058-3
- Grote, E., Busse, F.H. (2000) Hemispherical dynamos generated by convection in rotating spherical shells. Phys. Rev. E 62:4457–4460. https://doi.org/10.1103/PhyARevE.62.4457
- Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Dikpati, M., McIntosh, S.W. (2017) North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23. Astrophys. J. 845(2):137–148. https://dx.doi.org/10.3847/1538-4357/aa830a
- Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Ramishvili, G., Shergelashvili, B., Hanslmeier, A., Poedts, S. (2016) Rieger-type periodicity during solar cycles 14–24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826(1):55. https://doi.org/10.3847/0004-637X/826/1/55
- He, J., Fu, Z.-F. (2001) Modal Analysis. Butterworth-Heinemann. ISBN 9780750650793. https://doi.org/10.1016/B978-0-7506-5079-3.X5000-1
- Jones, G., Balogh, A. (2003) The global heliospheric magnetic field polarity distribution as seen at Ulysses. Annales Geophysicae 21(6):1377–1382. https://doi.org/10.5194/angeo-21-1377-2003
- Kasper, J.C., Maruca, B.A., Stevens, M.L., Zaslavsky, A. (2013) Sensitive Test for Ion-Cyclotron Resonant Heating in the Solar Wind. Phys. Rev. Lett. 110:091102. https://doi.org/10.1103/PhysRevLett.110.091102
- Kinkhabwala, A. (2013) Maximum Fidelity. Max Planck Institute of Molecular Physiology report. https://arxiv.org/abs/1301.5186
- Knaack, R., Stenflo, J.O. (2005) Spherical harmonic decomposition of solar magnetic fields. Astron. Astrophys. 438(1):349–363. https://doi.org/10.1051/0004-6361:20052765
- Kurochkin, N.E. (1998) Transient periodicity in solar activity. Astron. Astrophys. Trans. 15(1–4):277–279. https://doi.org/10.1080/10556799808201781
- Markovskii, S.A., Vasquez, B.J., Hollweg, J.V. (2009) Proton heating by nonlinear field-aligned Alfvén waves in solar coronal holes. Astrophys. J. 695(2):1413. https://doi.org/10.1088/0004-637X/695/2/1413
- Mattsson, L., Wahlin, R., Höfner, S. (2010) Dust driven mass loss from carbon stars as a function of stellar parameters - I. A grid of solar-metallicity wind models. Astron. Astrophys. 509:A14. https://doi.org/10.1051/0004-6361/200912084
- McLeod, A.F., Dale, J.E., Evans, C.J., Ginsburg, A., Kruijssen, J.M.D., Pellegrini, E.W., Ramsay, S.K., Testi, L. (2019) Feedback from massive stars at low metallicities: MUSE observations of N44 and N180 in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 486:5263–5288. https://doi.org/10.1093/mnras/sty2696
- Omerbashich, M. (2021a) Non-marine tetrapod extinctions solve extinction periodicity mystery. Hist. Biol. 34 (29 March). https://doi.org/10.1080/08912963.2021.1907367
- Omerbashich, M. (2007) Erratum due to journal error. Comp. Sci. Eng. 9(4):5–6. DOI: https://doi.org/10.1109/MCSE.2007.79; https://arxiv.org/abs/math-ph/0608014)
- Omerbashich, M. (2006) Gauss–Vaníček Spectral Analysis of the Sepkoski Compendium: No New Life Cycles. Comp. Sci. Eng. 8(4):26–30. https://doi.org/10.1109/MCSE.2006.68
- Omerbashich, M. (2003) Earth-model Discrimination Method. Ph.D. Dissertation, pp.129. ProQuest, USA. https://doi.org/10.6084/m9.figshare.12847304
- Pagiatakis, S. (1999) Stochastic significance of peaks in the least-squares spectrum. J. Geod. 73:67–78. https://doi.org/10.1007/s001900050220
- Pap, J., Tobiska, W.K., Bouwer, S.D. (1990) Periodicities of solar irradiance and solar activity indices, I. Sol. Phys. 129:165–189. https://doi.org/10.1007/BF00154372
- Papaloizou, J., Pringle, J.E. (1978) Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables. Mon. Not. R. Astron. Soc. 182:423–442. https://doi.org/10.1093/mnras/182.3.423
- Parker, E.N. (1988) Nanoflares and the solar X-ray corona. Astrophys. J. 330:474–479. https://ui.adsabs.harvard.edu/abs/1988ApJ...330..474P
- Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007) Numerical Recipes: The Art of Scientific Computing (3rd Ed.). Cambridge University Press, United Kingdom. ISBN 9780521880688
- Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L. (1984) A 154-day periodicity in the occurrence of hard solar flares? Nature 312:623–625. https://doi.org/10.1038/312623a0
- Robson J.D., Dodds C.J., Macvean D.B., Paling, V.R. (1971) Vibration Theory I: Receptance. In: Random Vibrations. International Centre for Mechanical Sciences (Courses and Lectures), Vol. 115. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2734-6_4
- Route, M. (2016) The discovery of solar-like activity cycles beyond the end of the main sequence? Astrophys. J. Lett. 830:L27. https://doi.org/10.3847/2041-8205/830/2/L27
- Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, Jr. T.L., Dittmer, P.H., Gustafson, E.K. (1977) The mean magnetic field of the Sun: Observations at Stanford. Sol. Phys. 54:353–361. https://doi.org/10.1007/BF00159925
- Schwabe, H. (1844) Solar observations during 1843. Astronomische Nachrichten 20(495):233–236. https://ui.adsabs.harvard.edu/abs/1844AN.....21..233S
- Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Tech. J. 27:379–423, 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Singh, Y.P., Badruddin (2019) Study of the solar rotational period and its harmonics in solar activity, interplanetary, geomagnetic, and cosmic ray intensity indicators during solar polarity reversal periods. Sol. Phys. 294:27. https://doi.org/10.1007/s11207-019-1413-y
- Smith, E.J., Marsden, R.G. (2003) Ulysses observations at solar maximum: introduction. Geophys. Res. Lett. 30:8027. https://doi.org/10.1029/2003GL018223
- Solanki, S.K., Inhester, B., Schussler, M. (2006) The solar magnetic field. Rep. Prog. Phys. 69(3):563–668. https://doi.org/10.1088/0034-4885/69/3/R02
- Soler, R., Terradas, J., Oliver, R., Ballester, J.L. (2021) Resonances in a coronal loop driven by torsional Alfvén waves propagating from the photosphere. Astrophys. J. 909(2):190. https://doi.org/10.3847/1538-4357/abdec5
- Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B., Pietropaolo, E. (2007) Observation of Inertial Energy Cascade in Interplanetary Space Plasma. Phys. Rev. Lett. 99(11):115001. https://doi.org/10.1103/PhysRevLett.99.115001
- Steeves, R.R. (1981). A statistical test for significance of peaks in the least squares spectrum. Collected Papers, Geodetic Survey, Department of Energy, Mines and Resources. Surveys and Mapping Branch, Ottawa Canada, pp. 149–166.
- Srivastava, A., Shetye, J., Murawski, K., Doyle, J.G., Stangalini, M., Scullion, E., Ray, T., Wojcik, D.P., Dwivedi, B.N. (2017) High-frequency torsional Alfvén waves as an energy source for coronal heating. Sci. Rep. 7:43147. https://doi.org/10.1038/srep43147
- Stenflo, J., Vogel, M. (1986) Global resonances in the evolution of solar magnetic fields. Nature 319:285–290. https://doi.org/10.1038/319285a0
- Taylor, J., Hamilton, S. (1972) Some tests of the Vaníček Method of spectral analysis. Astrophys. Space Sci. 17:357–367. https://doi.org/10.1007/BF00642907
- Thomas, S.R., Owens, M.J., Lockwood, M. (2014) The 22-year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation. Sol. Phys. 289(1):407–421. https://doi.org/10.1007/s11207-013-0341-5
- Thomson, D., Maclennan, C., Lanzerotti, L. (1995) Propagation of solar oscillations through the interplanetary medium. Nature 376:139–144. https://doi.org/10.1038/376139a0
- Tokumaru, M., Fujiki, K., Iju, T. (2015) North-south asymmetry in global distribution of the solar wind speed during 1985–2013. J. Geophys. Res. Space Phys. 120:3283–3296. https://doi.org/10.1002/2014JA020765
- Vaníček, P. (1969) Approximate spectral analysis by least-squares fit. Astrophys. Space Sci. 4(4):387–391. https://doi.org/10.1007/BF00651344
- Vaníček, P. (1971) Further development and properties of the spectral analysis by least-squares fit. Astrophys. Space Sci. 12(1):10–33. https://doi.org/10.1007/BF00656134
- Vecchio, A., Carbone, V. (2009) Spatio-temporal analysis of solar activity: main periodicities and period length variations. Astron. Astrophys. 502(3):981–987. https://doi.org/10.1051/0004-6361/200811024
- Verscharen, D., Klein, K.G., Maruca, B.A. (2019) The multi-scale nature of the solar wind. Living Rev. Sol. Phys. 16:5, pp.136. https://doi.org/10.1007/s41116-019-0021-0
- Wells, D.E., Vaníček, P., Pagiatakis, S. (1985) Least squares spectral analysis revisited. Department of Geodesy & Geomatics Engineering Technical Report 84, University of New Brunswick, Canada. http://www2.unb.ca/gge/Pubs/TR84.pdf
- Withbroe, G.L., Noyes, R.W. (1977) Mass and Energy Flow in the Solar Chromosphere and Corona. Ann. Rev. Astron. Astrophys. 15(1):363–387. https://doi.org/10.1146/annurev.aa.15.090177.002051
- Wolff, C.L., Blizard, J.B. (1986) Properties of r-modes in the Sun. Sol. Phys. 105:1–15. https://doi.org/10.1007/BF00156371
- Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L. (2010) Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709(2):749–758. https://doi.org/10.1088/0004-637X/709/2/749
Subjects
- Sun
- http://astrothesaurus.org/uat/1693
- Active sun
- http://astrothesaurus.org/uat/18
- Solar wind
- http://astrothesaurus.org/uat/1534
- Fast solar wind
- http://astrothesaurus.org/uat/1872
- Slow solar wind
- http://astrothesaurus.org/uat/1873
- Solar oscillations
- http://astrothesaurus.org/uat/1515
- Alfven waves
- http://astrothesaurus.org/uat/23
- Time series analysis
- http://astrothesaurus.org/uat/1916
- Period search
- http://astrothesaurus.org/uat/1955
- Gauss-Vaniček spectral analysis
- http://astrothesaurus.org/uat/1959
- Astrophysical processes
- http://astrothesaurus.org/uat/104
- Magnetic fields
- http://astrothesaurus.org/uat/102
- Interplanetary medium
- http://astrothesaurus.org/uat/825
- Gravitational interaction
- http://astrothesaurus.org/uat/1110
- Solar-terrestrial interactions
- http://astrothesaurus.org/uat/1473
- Solar analogs
- http://astrothesaurus.org/uat/1941