Published January 12, 2022 | Version 1 (2021)
Dataset Open

Urban Green Raster Germany 2018

  • 1. Leibniz Institute of Ecological Urban and Regional Development, Dresden
  • 2. German Aerospace Center (DLR)

Description

Abstract

The Urban Green Raster Germany is a land cover classification for Germany that addresses in particular the urban vegetation areas. The raster dataset covers the terrestrial national territory of Germany and has a spatial resolution of 10 meters. The dataset is based on a fully automated classification of Sentinel-2 satellite data from a full 2018 vegetation period using reference data from the European LUCAS land use and land cover point dataset.
The dataset identifies eight land cover classes. These include Built-up, Built-up with significant green share, Coniferous wood, Deciduous wood, Herbaceous vegetation (low perennial vegetation), Water, Open soil, Arable land (low seasonal vegetation).
The land cover dataset provided here is offered as an integer raster in GeoTiff format. The assignment of the number coding to the corresponding land cover class is explained in the legend file.

Data acquisition

The data acquisition comprises two main processing steps: (1) Collection, processing, and automated classification of the multispectral Sentinel 2 satellite data with the “Land Cover DE method”, resulting in the raw land cover classification dataset, NDVI layer, and RF assignment frequency vector raster. (2) GIS-based postprocessing including discrimination of (densely) built-up and loosely built-up pixels according NDVI threshold, and creating water-body and arable-land masks from geo-topographical base-data (ATKIS Basic DLM) and reclassification of water and arable land pixels based on the assignment frequency.

Data collection

Satellite data were searched and downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).

The LUCAS reference and validation points were loaded from the Eurostat platform (https://ec.europa.eu/eurostat/web/lucas/data/database).

The processing of the satellite data was performed at the DLR data center in Oberpfaffenhofen.

GIS-based post-processing of the automatic classification result was performed at IOER in Dresden.

Value of the data

The dataset can be used to quantify the amount of green areas within cities on a homogeneous data base [5].

Thus it is possible to compare cities of different sizes regarding their greenery and with respect to their ratio of green and built-up areas [6].

Built-up areas within cities can be discriminated regarding their built-up density (dense built-up vs. built-up with higher green share).

Data description

A Raster dataset in GeoTIFF format: The dataset is stored as an 8 bit integer raster with values ranging from 1 to 8 for the eight different land cover classes. The nomenclature of the coded values is as follows: 1 = Built-up, 2=open soil; 3=Coniferous wood, 4= Deciduous wood, 5=Arable land (low seasonal vegetation), 6=Herbaceous vegetation (low perennial vegetation), 7=Water, 8=Built-up with significant green share. Name of the file ugr2018_germany.tif. The dataset is zipped alongside with accompanying files: *.twf (geo-referencing world-file), *.ovr (Overlay file for quick data preview in GIS), *.clr (Color map file).

A text file with the integer value assignment of the land cover classes. Name of the file: Legend_LC-classes.txt.

Experimental design, materials and methods

The first essential step to create the dataset is the automatic classification of a satellite image mosaic of all available Sentinel-2 images from May to September 2018 with a maximum cloud cover of 60 percent. Points from the 2018 LUCAS (Land use and land cover survey) dataset from Eurostat [1] were used as reference and validation data. Using Random Forest (RF) classifier [2], seven land use classes (Deciduous wood, Coniferous wood, Herbaceous vegetation (low perennial vegetation), Built-up, Open soil, Water, Arable land (low seasonal vegetation)) were first derived, which is methodologically in line with the procedure used to create the dataset "Land Cover DE - Sentinel-2 - Germany, 2015" [3]. The overall accuracy of the data is 93 % [4].

Two downstream post-processing steps served to further qualify the product. The first step included the selective verification of pixels of the classes arable land and water. These are often misidentified by the classifier due to radiometric similarities with other land covers; in particular, radiometric signatures of water surfaces often resemble shadows or asphalt surfaces. Due to the heterogeneous inner-city structures, pixels are also frequently misclassified as cropland.

To mitigate these errors, all pixels classified as water and arable land were matched with another data source. This consisted of binary land cover masks for these two land cover classes originating from the Monitor of Settlement and Open Space Development (IOER Monitor). For all water and cropland pixels that were outside of their respective masks, the frequencies of class assignments from the RF classifier were checked. If the assignment frequency to water or arable land was at least twice that to the subsequent class, the classification was preserved. Otherwise, the classification strength was considered too weak and the pixel was recoded to the land cover with the second largest assignment frequency.

Furthermore, an additional land cover class "Built-up with significant vegetation share" was introduced. For this purpose, all pixels of the Built-up class were intersected with the NDVI of the satellite image mosaic and assigned to the new category if an NDVI threshold was exceeded in the pixel. The associated NDVI threshold was previously determined using highest resolution reference data of urban green structures in the cities of Dresden, Leipzig and Potsdam, which were first used to determine the true green fractions within the 10m Sentinel pixels, and based on this to determine an NDVI value that could be used as an indicator of a significant green fraction within the built-up pixel. However, due to the wide dispersion of green fraction values within the built-up areas, it is not possible to establish a universally valid green percentage value for the land cover class of Built-up with significant vegetation share. Thus, the class essentially serves to the visual differentiability of densely and loosely (i.e., vegetation-dominated) built-up areas.

Acknowledgments

This work was supported by the Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR) [10.06.03.18.101].The provided data has been developed and created in the framework of the research project “Wie grün sind bundesdeutsche Städte?- Fernerkundliche Erfassung und stadträumlich-funktionale Differenzierung der Grünausstattung von Städten in Deutschland (Erfassung der urbanen Grünausstattung)“ (How green are German cities?- Remote sensing and urban-functional differentiation of the green infrastructure of cities in Germany (Urban Green Infrastructure Inventory)). Further persons involved in the project were: Fabian Dosch (funding administrator at BBSR), Stefan Fina (research partner, group leader at ILS Dortmund), Annett Frick, Kathrin Wagner (research partners at LUP Potsdam).

References

[1] Eurostat (2021): Land cover / land use statistics database LUCAS. URL: https://ec.europa.eu/eurostat/web/lucas/data/database

[2] L. Breiman (2001). Random forests, Mach. Learn., 45, pp. 5-32

[3] M. Weigand, M. Wurm (2020). Land Cover DE - Sentinel-2—Germany, 2015 [Data set]. German Aerospace Center (DLR). doi: 10.15489/1CCMLAP3MN39

[4] M. Weigand, J. Staab, M. Wurm, H. Taubenböck, (2020). Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int J Appl Earth Obs, 88, 102065. doi: https://doi.org/10.1016/j.jag.2020.102065

[5] L. Eichler., T. Krüger, G. Meinel, G. (2020). Wie grün sind deutsche Städte? Indikatorgestützte fernerkundliche Erfassung des Stadtgrüns. AGIT Symposium 2020, 6, 306–315. doi: 10.14627/537698030

[6] H. Taubenböck, M. Reiter, F. Dosch, T. Leichtle, M. Weigand, M. Wurm (2021). Which city is the greenest? A multi-dimensional deconstruction of city rankings. Comput Environ Urban Syst, 89, 101687. doi: 10.1016/j.compenvurbsys.2021.101687

Notes

Acknowledgments This work was supported by the Federal Institute for Research on Building, Urban Affairs and Spatial Development (BBSR) [10.06.03.18.101].The provided data has been developed and created in the framework of the research project "Wie grün sind bundesdeutsche Städte?- Fernerkundliche Erfassung und stadträumlich-funktionale Differenzierung der Grünausstattung von Städten in Deutschland (Erfassung der urbanen Grünausstattung)" (How green are German cities?- Remote sensing and urban-functional differentiation of the green infrastructure of cities in Germany (Urban Green Infrastructure Inventory)). Further persons involved in the project were: Fabian Dosch (funding administrator at BBSR), Stefan Fina (research partner, group leader at ILS Dortmund), Annett Frick, Kathrin Wagner (research partners at LUP Potsdam).

Files

urbangreenraster2018_germany.ZIP

Files (472.3 MB)

Name Size Download all
md5:9b36cec2d3fa43a3540a08c5fd8323af
472.3 MB Preview Download