There is a newer version of the record available.

Published May 26, 2017 | Version v1
Dataset Open

Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology


General Description. This dataset consists of:

  1. The threshold crossing times of extracellularly and simultaneously recorded spikes, sorted into units (up to five, including a "hash" unit), along with sorted waveform snippets, and,
  2. The x,y position of the fingertip of the reaching hand and the x,y position of reaching targets (both sampled at 250 Hz).

The behavioral task was to make self-paced reaches to targets arranged in a grid (e.g. 8x8) without gaps or pre-movement delay intervals. One monkey reached with the right arm (recordings made in the left hemisphere); The other reached with the left arm (right hemisphere). In some sessions recordings were made from both M1 and S1 arrays (192 channels); in most sessions M1 recordings were made alone (96 channels).

Data from two primate subjects are included: 37 sessions from monkey 1 ("Indy", spanning about 10 months) and 10 sessions from monkey 2 ("Loco", spanning about 1 month), for a total of ~ 20,000 reaches and 6,500 reaches from monkeys 1 and 2, respectively.

Possible uses. These data are ideal for training BCI decoders, in particular because they are not segmented into trials. We expect that the dataset will be valuable for researchers who wish to design improved models of sensorimotor cortical spiking or provide an equal footing for comparing different BCI decoders. Other uses could include analyses of the statistics of arm kinematics, spike noise-correlations or signal-correlations, or for exploring the stability or variability of extracellular recording over sessions.

Variable names. Each file contains data in the following format. In the below, n refers to the number of recording channels, u refers to the number of sorted units, and k refers to the number of samples.

  •  chan_names - n x 1
    • A cell array of channel identifier strings, e.g. "M1 001".
  •  cursor_pos - k x 2
    • The position of the cursor in Cartesian coordinates (x, y), mm.
  •  finger_pos - k x 3 or k x 6
    • The position of the working fingertip in Cartesian coordinates (z, -x, -y), as reported by the hand tracker in cm. Thus the cursor position is an affine transformation of fingertip position using the following matrix:
      \(\begin{pmatrix} 0 & 0 \\ -10 & 0 \\ 0 & -10 \end{pmatrix}\)
      Note that for some sessions finger_pos includes the orientation of the sensor as well; the full state is thus: (z, -x, -y, azimuth, elevation, roll).
  •  target_pos - k x 2
    • The position of the target in Cartesian coordinates (x, y), mm.
  •  t - k x 1
    • The timestamp corresponding to each sample of the cursor_pos, finger_pos, and target_pos, seconds.
  •  spikes - n x u
    • A cell array of spike event vectors. Each element in the cell array is a vector of spike event timestamps, in seconds. The first unit (u1) is the "unsorted" unit, meaning it contains the threshold crossings which remained after the spikes on that channel were sorted into other units (u2, u3, etc.) For some sessions spikes were sorted into up to 2 units (i.e. u=3); for others, 4 units (u=5).
  •  wf - n x u
    • A cell array of spike event waveform "snippets". Each element in the cell array is a matrix of spike event waveforms. Each waveform corresponds to a timestamp in "spikes". Waveform samples are in microvolts.

Videos. For some sessions, we recorded screencasts of the stimulus presentation display using a dedicated hardware video grabber. These screencasts are thus a faithful representation of the stimuli and feedback presented to the monkey and are available for the following sessions:

Supplements. The raw broadband neural recordings that the spike trains in this dataset were extracted from are available for the following sessions:

Contact  Information. We would be delighted to hear from you if you find this dataset valuable, especially if it leads to publication. Corresponding author: J. E. O'Doherty <>.

Publications making use of this dataset.

  1. Makin, J. G., O'Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N. (2018). Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. J Neural Eng 15(2): 026010. doi:10.1088/1741-2552/aa9e95 
  2. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2018). Spike Rate Estimation Using Bayesian Adaptive Kernel Smoother (BAKS) and Its Application to Brain Machine Interfaces. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 2018, pp. 2547-2550. doi:10.1109/EMBC.2018.8512830
  3. Balasubramanian, M., Ruiz, T., Cook, B., Bhattacharyya, S., Prabhat, Shrivastava, A. & Bouchard K. (2018). Optimizing the Union of Intersections LASSO (UoILASSO) and Vector Autoregressive (UoIVAR) Algorithms for Improved Statistical Estimation at Scale. arXiv preprint arXiv:1808.06992
  4. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2019). Decoding Hand Kinematics from Local Field Potentials Using Long Short-Term Memory (LSTM) Network. arXiv preprint arXiv:1901.00708
  5. Clark, D. G., Livezey, J. A., & Bouchard, K. E. (2019). Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis. arXiv preprint arXiv:1905.09944
  6. Shaikh, S., So, R., Sibindi, T., Libedinsky, C., & Basu, A. (2019). Towards Intelligent Intra-cortical BMI (i2BMI): Low-power Neuromorphic Decoders that outperform Kalman Filters. bioRxiv preprint 772988. doi:10.1101/772988
  7. Clark, D. G., Livezey, J. A., & Bouchard, K. E. (2019). Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis. Advances in Neural Information Processing Systems (NeurIPS) 32.
  8. Keshtkaran, M. R., & Pandarinath, C. (2019). Enabling hyperparameter optimization in sequential autoencoders for spiking neural data. Advances in Neural Information Processing Systems (NeurIPS) 32.
  9. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2019). End-to-End Hand Kinematic Decoding from LFPs Using Temporal Convolutional Network. 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, pp. 1-4. doi:10.1109/biocas.2019.8919131
  10. Bose, S. K., Acharya, J., & Basu, A. (2019). Is my Neural Network Neuromorphic? Taxonomy, Recent Trends and Future Directions in Neuromorphic Engineering. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, pp. 1522-1527. doi:10.1109/IEEECONF44664.2019.9048891
  11. Sachdeva, P. S., Bhattacharyya, S., & Bouchard, K. E. (2019). Sparse, Predictive, and Interpretable Functional Connectomics with UoILasso, 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 1965-1968. doi:10.1109/EMBC.2019.8856316
  12. Sachdeva, P. S, Livezey, J. A, Dougherty, M. E., Gu, B.-M., Berke, J. D, & Bouchard, K. E. (2020). Accurate Inference in Parametric Models Reshapes Neuroscientific Interpretation and Improves Data-driven Discovery. bioRxiv Preprint. 2020.04.10.036244. doi:10.1101/2020.04.10.036244
  13. Ahmadi, N., Constandinou, T. G., Bouganis, C.-S. (2020). Inferring entire spiking activity from local field potentials with deep learning. bioRxiv Preprint. 2020.05.02.074104. doi:10.1101/2020.05.02.074104
  14. Ahmadi, N., Constandinou, T. G., Bouganis. C.-S. (2020). Impact of referencing scheme on decoding performance of LFP-based brain-machine interface. bioRxiv Preprint. 2020.05.03.075218 doi:10.1101/2020.05.03.075218


This research was supported by the Congressionally Directed Medical Research Program (W81XWH-14-1-0510). JEO was supported by fellowship #2978 from the Paralyzed Veterans of America. JGM was supported by a fellowship from the Swartz Foundation.


Files (24.0 GB)

Name Size Download all
418.1 MB Download
663.3 MB Download
590.1 MB Download
817.2 MB Download
376.5 MB Download
923.5 MB Download
1.1 GB Download
909.0 MB Download
144.0 MB Download
1.1 GB Download
382.2 MB Download
106.6 MB Download
124.0 MB Download
109.2 MB Download
120.3 MB Download
126.9 MB Download
117.9 MB Download
100.7 MB Download
84.0 MB Download
107.7 MB Download
138.7 MB Download
158.4 MB Download
107.0 MB Download
139.3 MB Download
129.9 MB Download
126.7 MB Download
110.3 MB Download
111.7 MB Download
128.2 MB Download
177.1 MB Download
106.2 MB Download
97.5 MB Download
112.7 MB Download
139.7 MB Download
152.0 MB Download
171.8 MB Download
208.8 MB Download
1.1 GB Download
1.3 GB Download
1.6 GB Download
779.5 MB Download
1.3 GB Download
1.2 GB Download
1.4 GB Download
1.6 GB Download
902.2 MB Download
2.0 GB Download

Additional details


  • 1. Makin, J. G., O'Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N. (2018). Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. J Neural Eng. 15(2): 026010. doi:10.1088/1741-2552/aa9e95