Development of mandelbrot set for the logistic map with two parameters in the complex plane
- 1. University of Diyala
- 2. Bilad Alrafidain University College
- 3. Dijlah University College; AL-Turath University College
Description
In this paper, the study of the dynamical behavior of logistic map has been disused with representing fractals graphics of map, the logistic map depends on two parameters and works in the complex plane, the map defined by f(z,α,β)=αz(1–z)β. where and are complex numbers, and β is a positive integers number, the visualization method used in this work to generate fractals of the map and to inspect the relation between the value of β and the shape of the map, this visualization analysis showed also that, as the value of β increasing, as the number of humps in the function also increasing, and it demonstrate that is true also for the function’s first iteration , f2(x0)=f(f(x0)) and the second iteration , f3(x0)=f(f2(x0)), beside that , the visualization technique showed that the number of humps in that fractal is less than the ones in the second iteration of the original function ,the study of the critical points and their properties of the logistic map also discussed it, whereas finding the fixed point led to find the critical point of the function f, in addition , it haven proven for the set of all pointsα∈C and β∈N, the iteration function f(f(z) has an attractive fixed points, and belongs to the region specified by the disc |1–β(α–1)|<1. Also, The discussion of the Mandelbrot set of the function defined by the f(f(z)) examined in complex plans using the path principle, such that the path of the critical point z=z0 is restricted, finally, it has proven that the Mandelbrot set f(z,α,β) contains all the attractive fixed points and all the complex numbers in which α≤(1/β+1) (1/β+1) and the region containing the attractive fixed points for f2(z,α,β) was identified
Files
Development of mandelbrot set for the logistic map with two parameters in the complex plane.pdf
Files
(2.3 MB)
Name | Size | Download all |
---|---|---|
md5:effccebdf850d1c88137e9c1397d4475
|
2.3 MB | Preview Download |
Additional details
References
- Yu, D., Ta, W., Zhou, Y. (2021). Fractal diffusion patterns of periodic points in the Mandelbrot set. Chaos, Solitons & Fractals, 153, 111599. doi: https://doi.org/10.1016/j.chaos.2021.111599
- Schilling, H. (1988). Peitgen, H.-O.; Richter, P. H., The Beauty of Fractals. Images of Complex Dynamical Systems. Berlin etc., Springer-Verlag 1986. XII, 199 pp., 184 figs., many in color, DM 78,—. ISBN 3-540-15851-0. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 68 (10), 512–512. doi: https://doi.org/10.1002/zamm.19880681015
- Brooks, R., Matelski, J. P. (1981). The Dynamics of 2-Generator Subgroups of PSL(2, ℂ). Riemann Surfacese and Related Topics (AM-97), 65–72. doi: https://doi.org/10.1515/9781400881550-007
- Devaney, R., Keen, L. (Eds). (1989). Chaos and Fractals: The Mathematics Behind the Computer Graphics. Proceedings of Symposia in Applied Mathematics. doi: https://doi.org/10.1090/psapm/039
- Choudhury, S. R. (1994). Dynamics and Bifurcations (Jack K. Hale and Huseyin Kocak). SIAM Review, 36 (2), 297–299. doi: https://doi.org/10.1137/1036075
- Liu, S., Pan, Z., Fu, W., Cheng, X. (2017). Fractal generation method based on asymptote family of generalized Mandelbrot set and its application. The Journal of Nonlinear Sciences and Applications, 10 (03), 1148–1161. doi: https://doi.org/10.22436/jnsa.010.03.24
- May, R. M., Leonard, W. J. (1975). Nonlinear Aspects of Competition Between Three Species. SIAM Journal on Applied Mathematics, 29 (2), 243–253. doi: https://doi.org/10.1137/0129022
- May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261 (5560), 459–467. doi: https://doi.org/10.1038/261459a0
- Douady, A., Hubbard, J. H. (2007). Etude´ dynamique des polynomes complexes. Societe Mathematique de France. Available at: https://pi.math.cornell.edu/~hubbard/OrsayFrench.pdf
- Hao, B.-L., Zheng, W.-M. (1998). Applied Symbolic Dynamics and Chaos. World Scientific, 460. doi: https://doi.org/10.1142/3830
- Introduction (2018). Applied Symbolic Dynamics and Chaos, 1–14. doi: https://doi.org/10.1142/9789813236431_0001
- S Chen, S., Feng, S., Fu, W., Zhang, Y. (2021). Logistic Map: Stability and Entrance to Chaos. Journal of Physics: Conference Series, 2014 (1), 012009. doi: https://doi.org/10.1088/1742-6596/2014/1/012009
- Kwun, Y. C., Tanveer, M., Nazeer, W., Gdawiec, K., Kang, S. M. (2019). Mandelbrot and Julia Sets via Jungck–CR Iteration With s –Convexity. IEEE Access, 7, 12167–12176. doi: https://doi.org/10.1109/access.2019.2892013
- Mandelbrot, B. B., Wheeler, J. A. (1983). The Fractal Geometry of Nature. American Journal of Physics, 51 (3), 286–287. doi: https://doi.org/10.1119/1.13295
- Lakhtakia, A., Varadan, V. V., Messier, R., Varadan, V. K. (1987). On the symmetries of the Julia sets for the process z⇒zp+c. Journal of Physics A: Mathematical and General, 20 (11), 3533–3535. doi: https://doi.org/10.1088/0305-4470/20/11/051
- Kim, T. (2015). Quaternion Julia Set Shape Optimization. Computer Graphics Forum, 34 (5), 167–176. doi: https://doi.org/10.1111/cgf.12705
- Drakopoulos, V., Mimikou, N., Theoharis, T. (2003). An overview of parallel visualisation methods for Mandelbrot and Julia sets. Computers & Graphics, 27 (4), 635–646. doi: https://doi.org/10.1016/s0097-8493(03)00106-7
- Sun, Y., Chen, L., Xu, R., Kong, R. (2014). An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves. PLoS ONE, 9 (1), e84655. doi: https://doi.org/10.1371/journal.pone.0084655
- Abbas, S. Q., Abd Almeer, H. A., Ahmed, W. S., Hammid, A. T. (2020). A novel algorithm for generating an edge-regular graph. Procedia Computer Science, 167, 1038–1045. doi: https://doi.org/10.1016/j.procs.2020.03.403
- Izhikevich, E. M. (2006). Dynamical Systems in Neuroscience. MIT Press. doi: https://doi.org/10.7551/mitpress/2526.001.0001
- Redona, J. F. (1996). The Mandelbrot set. Theses Digitization Project. Available at: https://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=2166&context=etd-project
- Fowler, A. C., McGuinness, M. J. (2019). The size of Mandelbrot bulbs. Chaos, Solitons & Fractals: X, 3, 100019. doi: https://doi.org/10.1016/j.csfx.2019.100019
- Milnor, J., Thurston, W. (1988). On iterated maps of the interval. Lecture Notes in Mathematics, 465–563. doi: https://doi.org/10.1007/bfb0082847
- Pesin, Y., Climenhaga, V. (2009). Lectures on Fractal Geometry and Dynamical Systems. The Student Mathematical Library. doi: https://doi.org/10.1090/stml/052
- Kumari, M., Kumari, S., Chugh, R. (2017). International Journal of Mathematics And its Applications Superior Julia Sets and Superior Mandelbrot Sets in SP Orbit. International Journal of Mathematics And its Applications, 5 (2-A), 67–83. Available at: http://ijmaa.in/v5n2-a/67-83.pdf
- Khamees, M., Ahmed, W. S., Abbas, S. Q. (2020). Train the Multi-Layer Perceptrons Based on Crow Search Algorithm. 2020 1st. Information Technology To Enhance e-Learning and Other Application (IT-ELA). doi: https://doi.org/10.1109/it-ela50150.2020.9253073
- Ashish, Cao, J., Chugh, R. (2018). Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model. Nonlinear Dynamics, 94 (2), 959–975. doi: https://doi.org/10.1007/s11071-018-4403-y
- Kim, Y. I., Feldstein, A. (1997). Bifurcation and k-cycles of a finite-dimensional iterative map, with applications to logistic delay equations. Applied Numerical Mathematics, 24 (2-3), 411–424. doi: https://doi.org/10.1016/s0168-9274(97)00036-6
- Fruchter, G., Ben-Haim, S. (1991). Stability analysis of one-dimensional dynamical systems applied to an isolated beating heart. Journal of Theoretical Biology, 148 (2), 175–192. doi: https://doi.org/10.1016/s0022-5193(05)80340-6
- Hirsch, M. W., Smale, S., Devaney, R. L. (2013). Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press. doi: https://doi.org/10.1016/c2009-0-61160-0
- Weisstein, E. W. Dottie Number." From MathWorld--A Wolfram Web Resource. Available at: https://mathworld.wolfram.com/DottieNumber.html
- Alobaidi, M. H., Idan Kadham, O. (2019). Dynamical Behavior of some families of cubic functions in complex plane. Tikrit Journal of Pure Science, 24 (7), 122. doi: https://doi.org/10.25130/j.v24i7.922
- Ahmed, W. S. (2013). Construction a MATLAB Program to Solving the Timetable Scheduling Problem. Journal of Engineering and Applied Sciences, 13 (23), 9976–9984. Available at: http://docsdrive.com/pdfs/medwelljournals/jeasci/2018/9976-9984.pdf