Published December 1, 2021 | Version v1
Journal article Open

Forecasting model with machine learning in higher education ICFES exams

  • 1. Universidad Distrital Franciso José de Caldas
  • 2. Universidad Nacional de Colombia
  • 3. Universitaria Agustiniana

Description

In this paper, we proposed to make different forecasting models in the University education through the algorithms K-means, K-closest neighbor, neural network, and naïve Bayes, which apply to specific exams of engineering, licensed and scientific mathematical thinking in Saber Pro of Colombia. ICFES Saber Pro is an exam required for the degree of all students who carry out undergraduate programs in higher education. The Colombian government regulated this exam in 2009 in the decree 3963 intending to verify the development of competencies, knowledge level, and quality of the programs and institutions. The objective is to use data to convert into information, search patterns, and select the best variables and harness the potential of data (average 650.000 data per semester). The study has found that the combination of features was: women have greater participation (68%) in Mathematics, Engineering, and Teaching careers, the urban area continues to be the preferred place to apply for higher studies (94%), Internet use increased by 50% in the last year, the support of the family nucleus is still relevant for the support in the formation of the children.

Files

79 23841 EMr 9apr21 8sep21 N.pdf

Files (457.4 kB)

Name Size Download all
md5:1bbb570c8ade8faa82c0260f1af82009
457.4 kB Preview Download