Published November 18, 2021 | Version v1
Book Open

ANIMAL AND HUMAN CORONAVIRUSES: Evolution and pathogenicity of the virus and disease prevention

  • 1. INIAV - National Institute of Agrarian and Veterinary Research, I.P.; Centre for Interdisciplinary Research in Animal Health (CIISA-FMV), Faculty of Medicine, University of Lisbon, Portugal
  • 2. INIAV - National Institute of Agrarian and Veterinary Research, I.P.; ce3c, Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Portugal
  • 3. INIAV - National Institute of Agrarian and Veterinary Research, I.P. Portugal
  • 4. FMV, ULisboa, CIISA-FMV, Portugal
  • 5. General Directorate of Food and Veterinary (DGAV), Portugal
  • 6. National Institute of Health Dr. Ricardo Jorge (INSA), Portugal
  • 7. NHS, Harrogate and District NHS Foundation Trust, UK
  • 1. INIAV - National Institute of Agrarian and Veterinary Research, I.P.; Centre for Interdisciplinary Research in Animal Health (CIISA-FMV), Faculty of Medicine, University of Lisbon, Portugal


The most recently discovered Human coronavirus, Severe Acute Respiratory Syndrome - Coronavirus - 2 (SARS-CoV-2), is certainly the best-known coronavirus of all, as it is considered a successful invader. First identified in late 2019, it generated the current pandemic of coronavirus disease of 2019 (COVID-19) when it spread across the planet in only a few months. Like some other members of the same family of viruses, SARS-CoV-2 can infect different types of human cells, however, the epithelia of the lungs and larynx are the main targets thus preferentially causing respiratory infections. Mortality associated with COVID-19 alongside the impacts on health, education, the economy and individual and social well-being are currently a concern for the whole world. These are not only due to the effects of the disease, but also the pandemic control measures imposed by governments across the world, namely mandatory isolation, and we are still looking to adapt to this new way of life alongside a virus that was previously unknown. However, humans and other animal species have long lived side by side with other coronaviruses, many of which unknown to most people, some quite harmless whilst other potentially lethal. In that sense, this is no different.

This book aims to assemble and disseminate information about the origin, evolution and pathogenesis of animal and human coronaviruses in a simple and accessible way, and through this clarify readers’ doubts and fears as well as the rationale underlying transmission prevention actions.

The main text of the manuscript is accompanied by two types of additional information for optional consultation; more in-depth information about some of the mentioned concepts (know more) and a set of questions & answers, providing the reader with the opportunity to clarify doubts relating to the content of each section. For the preparation of this book, we counted on the collaboration of technicians, researchers and academics in the areas of microbiology, epidemiology, animal health and public health. During the production and editing process, a board game and cards (Beat Corona) were also produced. These further explored some of the concepts mentioned in this book, including behaviours related to life in society and their implications in the transmission of diseases caused by coronaviruses, including COVID-19. This game can be used as a pedagogical resource in the classroom context, or as a mere leisure and learning activity.


Originally published in Portuguese as "Coronavírus dos animais e do Homem: evolução e patogenia do vírus e prevenção de doença, 2020", sponsored by APBE - Associação Portuguesa de Biologia Evolutiva, Íngreme Post Production, Lda, and INIAV – National Institute for Agrarian and Veterinarian Research. - Translation and adaptation (EN): Sara Portela, Margarida Duarte, Teresa Nogueira, Ana Botelho, Sandra Cavaco, Ana Duarte, Patrícia Tavares, Rita Sousa. - Traduction et adaptation du portugais (FR) : Teresa Nogueira - Traducción y adaptación (ES): Gonçalo Nieto Almeida - Traduzione dalla versione portoghese, adattamento e revisione scientifica per la versione italiana (IT): Lucia Martinelli, MUSE - Museo delle Scienze, Trento, Italia - Prevod i adaptacija (SERB): Bojan Kenig - Revision and Proofreading (EN): Sara Portela - Relecture (FR) : KennisTranslations - Scientific revision of the English version (EN): Sara Portela and Margarida Duarte - Révision scientifique de la version française (FR) : Graça Belo (CHUV - Centre Hospitalier Universitaire Vaudois, Lausanne, Suisse) ACKNOWLEDGMENT For understanding the pertinence of this project and believing in it, a huge thank you to the following organisations/ bodies who funded the editing of this book and made this project possible: APBE - Associação Portuguesa de Biologia Evolutiva; INGREME Post Production, Lda.; INIAV - Instituto Nacional de Investigação Agrária e Veterinária, I.P. This publication is based upon work from COST Action EuroScitizen - Building on scientific literacy in Evolution towards scientifically responsible Europeans, supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.



Files (23.7 MB)

Name Size Download all
3.9 MB Preview Download
3.8 MB Preview Download
3.6 MB Preview Download
3.7 MB Preview Download
3.5 MB Preview Download
3.6 MB Preview Download
1.6 MB Preview Download

Additional details


  • Wertheim JO, Chu DKW, Peiris JSM, Pond SLK, Poon LLM. A Case for the Ancient Origin of Coronaviruses. Journal of Virology. 2013;87(12):7039-7045. doi:10.1128/JVI.03273-12
  • An Apparently New Respiratory Disease of Baby Chicks. Published 1931. Accessed April 15, 2021.
  • Tyrrell DA, Almeida JD. Direct electron-microscopy of organ culture for the detection and characterization of viruses. Arch Gesamte Virusforsch. 1967;22(3):417-425. doi:10.1007/BF01242962
  • Almeida J, berry D, Cunningham C, et al. Virology: Coronaviruses. Nature. 1968;220(5168):650-650. doi:10.1038/220650b0
  • Tyrrell DAJ, Almeida JD, Cunningham CH, et al. Coronaviridae. Intervirology. 1975;5(1-2):76-82. doi:10.1159/000149883
  • Burrell CJ, Howard CR, Murphy FA. Coronaviruses. In: Fenner and White's Medical Virology. Elsevier; 2017:437-446. doi:10.1016/B978-0-12-375156-0.00031-X
  • Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: structure and genome expression. J Gen Virol. 1988;69 ( Pt 12):2939-2952. doi:10.1099/0022-1317-69-12-2939
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. doi:10.1007/978-1-4939-2438-7_1
  • Banner LR, Mc Lai M. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology. 1991;185(1):441-445. doi:10.1016/0042-6822(91)90795-D
  • Fenner's Veterinary Virology - 5th Edition. Accessed October 1, 2020.
  • Lam TT-Y, Jia N, Zhang Y-W, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. 2020;583(7815):282-285. doi:10.1038/s41586-020-2169-0
  • Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Veterinary Microbiology. 2020;244:108693. doi:10.1016/j.vetmic.2020.108693
  • Maclachlan NJ, Dubovi EJ. Fenner's Veterinary Virology - 5th Edition. Accessed October 1, 2020.
  • Kipar A, Meli ML. Feline Infectious Peritonitis. Veterinary Pathology. 2014;51(2):22.
  • . Vijgen L, Keyaerts E, Moës E, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol. 2005;79(3):1595-1604. doi:10.1128/JVI.79.3.1595-1604.2005
  • Saif L, Sestak K. Transmissible gastroenteritis and porcine respiratory coronavirus. Diseases of Swine. Published online January 1, 2006:489-516.
  • Decaro N, Mari V, Campolo M, et al. Recombinant Canine Coronaviruses Related to Transmissible Gastroenteritis Virus of Swine Are Circulating in Dogs. Journal of Virology. 2009;83(3):1532-1537. doi:10.1128/JVI.01937-08
  • Guy JS. Turkey coronavirus is more closely related to avian infectious bronchitis virus than to mammalian coronaviruses: A review. Avian Pathology. 2000;29(3):207-212. doi:10.1080/03079450050045459
  • Woo PCY, Lau SKP, Lam CSF, et al. Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus. Journal of Virology. 2012;86(7):3995-4008. doi:10.1128/JVI.06540-11
  • Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48(8):2940-2947. doi:10.1128/JCM.00636-10
  • Pene F, Merlat A, Vabret A, et al. Coronavirus 229E-Related Pneumonia in Immunocompromised Patients. Clinical Infectious Diseases. 2003;37(7):929-932. doi:10.1086/377612
  • Woo PCY, Lau SKP, Chu C, et al. Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia. J Virol. 2005;79(2):884-895. doi:10.1128/ JVI.79.2.884-895.2005
  • . Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis. 2003;36(8):985-989. doi:10.1086/374222
  • Os coronavírus dos animais e do Homem: das infeções assintomáticas às síndromes respiratórias agudas. Veterinaria Atual. Published April 7, 2020. Accessed April 2, 2021. destaques/os-coronavirus-dos-animais-e-do-homem-das-infecoes-assintomaticas-as-sindromes-respiratorias-agudas/
  • . Ferrari D, Sabetta E, Ceriotti D, et al. Routine blood analysis greatly reduces the false-negative rate of RT-PCR testing for Covid-19. Acta Bio Medica Atenei Parmensis. 2020;91(3):e2020003. doi:10.23750/ abm.v91i3.9843
  • . Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371. doi:10.1136/bmj.m3862
  • Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. Published online April 21, 2020:m1443. doi:10.1136/bmj.m1443
  • Coronavirus Dashboard. Accessed October 1, 2020.
  • . Childhood Multisystem Inflammatory Syndrome — A New Challenge in the Pandemic | NEJM. Accessed April 3, 2021.
  • Grant MC, Geoghegan L, Arbyn M, et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries. Hirst JA, ed. PLoS ONE. 2020;15(6):e0234765. doi:10.1371/journal.pone.0234765
  • Mortality Risk of COVID-19 - Statistics and Research. Our World in Data. Accessed October 1, 2020.
  • Arora RK, Joseph A, Van Wyk J, et al. SeroTracker: a global SARS-CoV-2 seroprevalence dashboard. The Lancet Infectious Diseases. Published online August 4, 2020. doi:10.1016/S1473-3099(20)30631-9
  • Immune responses and immunity to SARS-CoV-2. European Centre for Disease Prevention and Control. Accessed October 12, 2020.
  • GeurtsvanKessel CH, Okba NMA, Igloi Z, et al. An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment. Nature Communications. 2020;11(1):3436. doi:10.1038/ s41467-020-17317-y
  • McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent Deletions in the SARS-CoV-2 Spike Glycoprotein Drive Antibody Escape. Microbiology; 2020. doi:10.1101/2020.11.19.389916
  • Kemp SA, Meng B, Ferriera IA, et al. Recurrent Emergence and Transmission of a SARS-CoV-2 Spike Deletion H69/V70. Microbiology; 2020. doi:10.1101/2020.12.14.422555
  • NERVTAG Note on B.1.1.7 Severity. Alliance for Pandemic Preparedness. Accessed March 30, 2021.
  • Investigation of novel SARS-CoV-2 variant: Variant of Concern 202012/01. :19.
  • Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. Published online December 22, 2020:2020.12.21.20248640. doi:10.1101/2020.12.21.20248640
  • mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants | bioRxiv. Accessed March 30, 2021.
  • Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings - SARS-CoV-2 coronavirus / nCoV-2019 Genomic Epidemiology. Virological. Published January 12, 2021. Accessed March 30, 2021.
  • Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil, 2020 - SARS-CoV-2 coronavirus / nCoV-2019 Genomic Epidemiology. Virological. Published January 10, 2021. Accessed April 3, 2021.
  • SARS-CoV-2 reinfection by the new Variant of Concern (VOC) P.1 in Amazonas, Brazil - SARS-CoV-2 coronavirus / nCoV-2019 Genomic Epidemiology. Virological. Published January 18, 2021. Accessed April 3, 2021.
  • Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020;323(22):2249-2251. doi:10.1001/jama.2020.8259
  • Nussbaumer-Streit B, Mayr V, Dobrescu AI, et al. Quarantine alone or in combination with other public health measures to control COVID‐19: a rapid review. Cochrane Database of Systematic Reviews. 2020;(9). doi:10.1002/14651858.CD013574.pub2
  • Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology Journal. 2019;16(1):69. doi:10.1186/s12985-019-1182-0
  • mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants | bioRxiv. Accessed April 2, 2021.
  • Draft landscape and tracker of COVID-19 candidate vaccines. Accessed April 2, 2021.
  • Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020 Oct;586(7830):516-527. doi: 10.1038/s41586-020-2798-3. Epub 2020 Sep 23
  • Wang H, Zhang Y, Huang B, et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell. 2020;182(3):713-721.e9. doi:10.1016/j.cell.2020.06.008
  • Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77-81. doi:10.1126/science.abc1932
  • Talon J, Salvatore M, O'Neill RE, et al. Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach. PNAS. 2000;97(8):4309-4314. doi:10.1073/pnas.070525997
  • Broadbent AJ, Santos CP, Anafu A, Wimmer E, Mueller S, Subbarao K. Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets. Vaccine. 2016;34(4):563-570. doi:10.1016/j.vaccine.2015.11.054
  • Amanat F, Stadlbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine. 2020;26(7):1033-1036. doi:10.1038/s41591-020-0913-5
  • Chen W-H, Tao X, Agrawal A, et al. Yeast-Expressed SARS-CoV Recombinant Receptor-Binding Domain (RBD219-N1) Formulated with Aluminum Hydroxide Induces Protective Immunity and Reduces Immune Enhancement. bioRxiv. Published online July 5, 2020. doi:10.1101/2020.05.15.098079
  • Zhu F-C, Li Y-H, Guan X-H, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The Lancet. 2020;395(10240):1845-1854. doi:10.1016/S0140-6736(20)31208-3
  • Zhu F-C, Guan X-H, Li Y-H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet. 2020;396(10249):479-488. doi:10.1016/S0140-6736(20)31605-6
  • Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020;396(10249):467-478. doi:10.1016/S0140-6736(20)31604-4
  • Sun W, McCroskery S, Liu W-C, et al. A Newcastle Disease Virus (NDV) Expressing a Membrane-Anchored Spike as a Cost-Effective Inactivated SARS-CoV-2 Vaccine. Vaccines (Basel). 2020;8(4). doi:10.3390/ vaccines8040771
  • Case JB, Rothlauf PW, Chen RE, et al. Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against SARS-CoV-2-Mediated Pathogenesis in Mice. Cell Host Microbe. 2020;28(3):465-474. e4. doi:10.1016/j.chom.2020.07.018
  • Sun W, Leist SR, McCroskery S, et al. Newcastle Disease Virus (NDV) Expressing the Spike Protein of SARS-CoV-2 as Vaccine Candidate. Microbiology; 2020. doi:10.1101/2020.07.26.221861
  • Rohaim MA, Munir M. A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2. Vaccines. 2020;8(3):472. doi:10.3390/vaccines8030472
  • Vogel AB, Lambert L, Kinnear E, et al. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Molecular Therapy. 2018;26(2):446-455. doi:10.1016/j.ymthe.2017.11.017
  • Pfaender S, Brinkmann J, Todt D, et al. Mechanisms of Methods for Hepatitis C Virus Inactivation. Griffiths MW, ed. Appl Environ Microbiol. 2015;81(5):1616. doi:10.1128/AEM.03580-14
  • WHO | Update 95 - SARS: Chronology of a serial killer. WHO. Accessed April 2, 2021.
  • Xu R-H, He J-F, Evans MR, et al. Epidemiologic Clues to SARS Origin in China. Emerg Infect Dis. 2004;10(6):1030-1037. doi:10.3201/eid1006.030852
  • RECOVERY Trial. Accessed April 2, 2021.
  • Threats I of M (US) F on M, Knobler S, Mahmoud A, et al. OVERVIEW OF THE SARS EPIDEMIC. National Academies Press (US); 2004. Accessed April 6, 2021.
  • WHO | Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia. WHO. Accessed October 1, 2020.
  • Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 — Final Report. New England Journal of Medicine. 2020;0(0):null. doi:10.1056/NEJMoa2007764
  • Arba M, Wahyudi ST, Brunt DJ, Paradis N, Wu C. Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-cov-2. Computers in Biology and Medicine. 2021;129:104156. doi:10.1016/j.compbiomed.2020.104156
  • Saramago M, Bárria C, Costa VG, et al. New targets for drug design: Importance of nsp14/nsp10 complex formation for the 3'-5' exoribonucleolytic activity on SARS-CoV-2. FEBS J. Published online March 11, 2021. doi:10.1111/febs.15815
  • Anand KB, Karade S, Sen S, Gupta RM. SARS-CoV-2: Camazotz's Curse. Medical Journal Armed Forces India. 2020;76(2):136-141. doi:10.1016/j.mjafi.2020.04.008