Planned intervention: On Thursday 19/09 between 05:30-06:30 (UTC), Zenodo will be unavailable because of a scheduled upgrade in our storage cluster.
Published March 18, 2021 | Version v1
Journal article Open

Active Learning of Bayesian Probabilistic Movement Primitives

  • 1. Idiap Research Institute, Martigny, Switzerland

Description

Learning from Demonstration permits non-expert users to easily and intuitively reprogram robots. Among approaches embracing this paradigm, probabilistic movement primitives (ProMPs) are a well-established and widely used method to learn trajectory distributions. However, providing or requesting useful demonstrations is not easy, as quantifying what constitutes a good demonstration in terms of generalization capabilities is not trivial. In this letter, we propose an active learning method for contextual ProMPs for addressing this problem. More specifically, we learn the trajectory distributions using a Bayesian Gaussian mixture model (BGMM) and then leverage the notion of epistemic uncertainties to iteratively choose new context query points for demonstrations. We show that this approach reduces the required number of human demonstrations. We demonstrate the effectiveness of the approach on a pouring task, both in simulation and on a real 7-DoF Franka Emika robot.

Files

Kulak-RAL2021.pdf

Files (5.4 MB)

Name Size Download all
md5:534213868e138dd004180ff7231a49b8
5.4 MB Preview Download

Additional details

Funding

CoLLaboratE – Co-production CeLL performing Human-Robot Collaborative AssEmbly 820767
European Commission