Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published February 29, 2020 | Version v1
Journal article Open

Realization of Various Gate level Combinational Circuits using Reversible Fredkin Gat

  • 1. Department of ECE, UTU, Dehradun, India.
  • 2. Department of Electrical Engineering, IT BHU, Varanasi, India
  • 1. Publisher

Description

This paper presents the digital logic gates which are reconstructed using fredkin gate [1]. The advantage of basic fredkin gate is that we could save the thermal waste which comes out due to computation that causes heat as bits just disappear into loss of energy. Such computation won't need any energy input. These assumptions make the gates sound like an energy efficient solution. However the implementation is done at level of logic gates. This can further be used in sequential circuits to increase the life time of transmitter and receiver circuitry of nodes. It will make the transmission and aggregation of information at node very energy efficient. The drawback of this application is it will cost fare amount of time to process data. These technical hurdles will increase latencies at node level. The protocols infused with energy optimization methods and reversible logic gates offered noticeable improvements in achieving performance and ensuring security of data and graphics. Since the 1980s, with work of Fredkin [1], the reversible circuits have been used in building large scale integration of circuits as elementary units of mobile computing, and recently in wireless networks, drug designing and ultra-fast computing technologies [4].

Files

C6565029320.pdf

Files (1.1 MB)

Name Size Download all
md5:40a40c83bdaa6f80b13d0c9f38126fc5
1.1 MB Preview Download

Additional details

Related works

Is cited by
Journal article: 2249-8958 (ISSN)

Subjects

ISSN
2249-8958
Retrieval Number
C6565029320/2020©BEIESP