Published October 7, 2021 | Version v1
Presentation Open

Kepler-93 : a testbed for detailed seismic modelling and orbital evolution of super-earths around solar-like stars

  • 1. University of Geneva
  • 2. École Polytechnique Fédérale de Lausanne
  • 3. Università degli Studi di Bologna

Description

Thanks to the high-quality data from space-based missions such as
CoRoT, Kepler and TESS, great synergies between asteroseismology and
exoplanetology were initiated and will further flourish with the future PLATO
mission. Indeed, the exoplanets detection itself does not rely on
stellar-model-dependent approaches and thus, a detailed characterization of
the host star improves significantly the understanding of the exoplanet. In
this context, we focused on Kepler-93, whose high-quality data and stellar
properties make it a PLATO benchmark target and motivate a new
characterization to reach their precision requirements. We carried out a
detailed stellar modeling using global and local minimization techniques and
considering various changes of the physical ingredients. We completed our
analysis with inversion techniques to provide a more robust mean density
estimate and test the impact of surface effects. The revised stellar
parameters allowed us to update the planetary parameters of Kepler-93b and
simulate its orbital evolution under the effects of tides and atmospheric
evaporation. We found that a detailed asteroseismic modeling will be able to
meet the PLATO standards for such a solar-like star.

Files

PLATO2021_Slides_Jérôme_Bétrisey.pdf

Files (2.2 MB)

Name Size Download all
md5:b16e93cfe37c678b7428525f23fd5c41
2.2 MB Preview Download

Additional details

Funding

Seismic inversions and modelling of transport processes in stars PZ00P2_185805
Swiss National Science Foundation

References

  • Huber, D., Chaplin, W. J., Christensen-Dalsgaard, J., et al. 2013, ApJ, 767, 127
  • Ballard, S., Chaplin, W. J., Charbonneau, D., et al. 2014, ApJ, 790, 12
  • Marcy, G. W., Isaacson, H., Howard, A. W., et al. 2014, ApJS, 210, 20
  • Silva Aguirre, V., Davies, G. R., Basu, S., et al. 2015, MNRAS, 452, 2127
  • Bellinger, E. P., Angelou, G. C., Hekker, S., et al. 2016, ApJ, 830, 31
  • Bellinger, E. P., Hekker, S., Angelou, G. C., Stokholm, A., Basu, S. 2019, A&A, 622, A130
  • Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 736, 19
  • Dressing, C. D., Charbonneau, D., Dumusque, X., et al. 2015, ApJ, 800, 135
  • Privitera, G., Meynet, G., Eggenberger, P., et al. 2016a, A&A, 593, L15
  • Privitera, G., Meynet, G., Eggenberger, P., et al. 2016b, A&A, 593, L15
  • Rao, S., Meynet, G., Eggenberger, P., et al. 2018, A&A, 618, A18 Rauer, H., Catala, C., Aerts, C., et al. 2014, Experimental Astronomy, 38, 249
  • Buldgen, G., Farnir, M., Pezzotti, C., et al. 2019a, A&A, 630, A126
  • Pezzotti, C., Eggenberger, P., Buldgen, G., et al. 2021, A&A, 650, A108
  • Rendle, B. M., Buldgen, G., Miglio, A., et al. 2019, MNRAS, 484, 771
  • Roxburgh, I. W. & Vorontsov, S. V. 2003, A&A, 411, 215
  • Dziembowski, W. A., Pamyatnykh, A. A., & Sienkiewicz, R. 1990, MNRAS, 244, 542
  • Pijpers, F. P. & Thompson, M. J. 1994, A&A, 281, 231
  • Reese, D. R., Marques, J. P., Goupil, M. J., Thompson, M. J., & Deheuvels, S. 2012, A&A, 539, A63
  • Davies, G. R., Silva Aguirre, V., Bedding, T. R., et al. 2016, MNRAS, 456, 2183