Published October 13, 2021
| Version 1.0.0
Dataset
Open
OpenForensics: Multi-Face Forgery Detection And Segmentation In-The-Wild Dataset [V.1.0.0]
- 1. National Institute of Informatics
- 2. Sokendai
Description
OpenForensics is the first large-scale dataset posing a high level of challenges. This dataset is designed with face-wise rich annotations explicitly for face forgery detection and segmentation. With its rich annotations, OpenForensics dataset has great potentials for research in both deepfake prevention and general human face detection. Project Page: https://sites.google.com/view/ltnghia/research/openforensics
Files
readme.txt
Files
(56.4 GB)
Name | Size | Download all |
---|---|---|
md5:caba0f55279cc8ce7619f3a3f3bf7a9f
|
854 Bytes | Preview Download |
md5:e8e25ab2427c44052d3a96f6e7c9c268
|
5.2 GB | Preview Download |
md5:f624d5f80aee3b0999a49d26679294fb
|
5.2 GB | Preview Download |
md5:3e0224b32637429422beacbecaabc96b
|
5.2 GB | Preview Download |
md5:134fb2e813d8beebf063294862c39475
|
5.2 GB | Preview Download |
md5:cd3977812dd79213607c905822c33c0b
|
2.6 GB | Preview Download |
md5:4fc30c976c6c4a4c55816bd3c345454b
|
747.8 MB | Preview Download |
md5:ad958b2a65f630926deba0ed85881e44
|
4.4 GB | Preview Download |
md5:64d4ad319c256916384d1263d451efaf
|
3.8 GB | Preview Download |
md5:2a979d06c7d358a06245d398461ab6df
|
313.4 MB | Preview Download |
md5:3fce7b51718c506135ec118d439e3522
|
4.5 GB | Preview Download |
md5:78db7c5a8b4c2c943428b8312beebb81
|
4.5 GB | Preview Download |
md5:8eff2225f34b614d298ca1c73f47ad68
|
4.4 GB | Preview Download |
md5:a59351777587618f49aefe0a95438718
|
4.5 GB | Preview Download |
md5:4d60a35c3956f36876c815a73e3dce39
|
2.0 GB | Preview Download |
md5:37a081e324f35b4605d70e7b781e8dd9
|
531.5 MB | Preview Download |
md5:80e7f692665d1758ac9ce581196e9d8d
|
3.1 GB | Preview Download |
md5:3c08659bdf1824be73f06e3f0848140f
|
121.7 MB | Preview Download |
Additional details
References
- Trung-Nghia Le, Huy H. Nguyen, Junichi Yamagishi, Isao Echizen, "OpenForensics: Large-Scale Challenging Dataset For Multi-Face Forgery Detection And Segmentation In-The-Wild", ICCV, 2021.