Published October 13, 2021 | Version 1.0.0
Dataset Open

OpenForensics: Multi-Face Forgery Detection And Segmentation In-The-Wild Dataset [V.1.0.0]

  • 1. National Institute of Informatics
  • 2. Sokendai

Contributors

Project leader:

  • 1. National Institute of Informatics

Description

OpenForensics is the first large-scale dataset posing a high level of challenges. This dataset is designed with face-wise rich annotations explicitly for face forgery detection and segmentation. With its rich annotations, OpenForensics dataset has great potentials for research in both deepfake prevention and general human face detection. Project Page:  https://sites.google.com/view/ltnghia/research/openforensics

Files

readme.txt

Files (56.4 GB)

Name Size Download all
md5:caba0f55279cc8ce7619f3a3f3bf7a9f
854 Bytes Preview Download
md5:e8e25ab2427c44052d3a96f6e7c9c268
5.2 GB Preview Download
md5:f624d5f80aee3b0999a49d26679294fb
5.2 GB Preview Download
md5:3e0224b32637429422beacbecaabc96b
5.2 GB Preview Download
md5:134fb2e813d8beebf063294862c39475
5.2 GB Preview Download
md5:cd3977812dd79213607c905822c33c0b
2.6 GB Preview Download
md5:4fc30c976c6c4a4c55816bd3c345454b
747.8 MB Preview Download
md5:ad958b2a65f630926deba0ed85881e44
4.4 GB Preview Download
md5:64d4ad319c256916384d1263d451efaf
3.8 GB Preview Download
md5:2a979d06c7d358a06245d398461ab6df
313.4 MB Preview Download
md5:3fce7b51718c506135ec118d439e3522
4.5 GB Preview Download
md5:78db7c5a8b4c2c943428b8312beebb81
4.5 GB Preview Download
md5:8eff2225f34b614d298ca1c73f47ad68
4.4 GB Preview Download
md5:a59351777587618f49aefe0a95438718
4.5 GB Preview Download
md5:4d60a35c3956f36876c815a73e3dce39
2.0 GB Preview Download
md5:37a081e324f35b4605d70e7b781e8dd9
531.5 MB Preview Download
md5:80e7f692665d1758ac9ce581196e9d8d
3.1 GB Preview Download
md5:3c08659bdf1824be73f06e3f0848140f
121.7 MB Preview Download

Additional details

References

  • Trung-Nghia Le, Huy H. Nguyen, Junichi Yamagishi, Isao Echizen, "OpenForensics: Large-Scale Challenging Dataset For Multi-Face Forgery Detection And Segmentation In-The-Wild", ICCV, 2021.