Published August 13, 2021 | Version v1
Dataset Open

Instance data for "Scheduling Trucks on Factory Premises"

Authors/Creators

  • 1. Aarhus University

Description

Instance data for the paper

  • Wirth, M., & Emde, S. (2018). Scheduling trucks on factory premises. Computers & Industrial Engineering, 126, 175-186.

Every instance is in a separate text file, of which there are 54 in total (18 small, medium, and large instances, respectively). The data format is as follows.

<num> is the running index of the instance.

<NumTrucks> is the total number of trucks (jobs).

<NumDoors> is the total number of dock doors (machines) on the factory premises.

<MaxDoors> denotes the maximum number of doors to be visited per truck.

<FactoryLength> denotes the size of the factory premises in meters (used to calculate the distances).

<Distribution> is the type of probability distribution used for generating the processing and transfer times.

<Processing> is a binary matrix signalling if a truck requires processing at a door: if and only if the entry in line i and column j is 1, truck j requires processing at door i.

<ProcessingTime> is the processing time matrix: the entry in line i and column j is the processing time of truck j at door i.

<DoorDistance> is the distance matrix between doors. The entrance / exit dummy door is the first line / column.

<ReleaseDate> is the release date vector for the trucks.

<DueDate> are the due dates of the trucks.

<Cost> are the weights in the objective for each truck.

Files

large_10_Instance.txt

Files (721.5 kB)

Name Size Download all
md5:58cc505ca12658ffcc613df44e47f593
21.9 kB Preview Download
md5:acb67dac2561609c720cd5d0ad7eb2cb
21.8 kB Preview Download
md5:f672ce94ceb48f5c21a8b762f4dc5b6d
21.9 kB Preview Download
md5:72ea3cd46b0d52f3537fd20ba20f93d8
25.3 kB Preview Download
md5:af674d88342990d9f12bdea0ae01701d
25.2 kB Preview Download
md5:55834a5546ddfca36c2cee63609d66a3
25.3 kB Preview Download
md5:d2038bb84e053208eb9033f5aa7370b8
25.3 kB Preview Download
md5:fc96197508de5aacb8046c82dda5f4bc
25.4 kB Preview Download
md5:f074393632609c07cda63b0672a55289
25.3 kB Preview Download
md5:ec5de8939bb0ce05bddeaf288f9d1b70
18.4 kB Preview Download
md5:eedc0063bac18e034506900c99387df9
18.4 kB Preview Download
md5:dc0bebac5b6a0660e203bad5efa32104
18.4 kB Preview Download
md5:a09f14d6da28e859cfaf0146dcc60c15
18.5 kB Preview Download
md5:5d1fe96387dc26e576c3ff2d31c96e24
18.4 kB Preview Download
md5:cbb79b73e0aa588a52ad0f37f9ed5bc0
18.5 kB Preview Download
md5:76b8b9c5484662cb594cef5c093d566b
21.7 kB Preview Download
md5:10806928d561563db7a5d8d83a0cc41a
21.8 kB Preview Download
md5:3bda2a7451d461d88a7143527e1d3928
21.8 kB Preview Download
md5:46c7f017cfc4134364fe5f425af8a3fd
12.4 kB Preview Download
md5:eb7f03eb0a3353615fe9ab036aa79b75
12.4 kB Preview Download
md5:25813efc0abc2eed10735cacd57f8ba7
12.5 kB Preview Download
md5:4a5aaa6a6d55d17cc08c6f2aa32b6406
14.4 kB Preview Download
md5:8d41eacb6b5e61aa8de7a4c6779e8bdb
14.4 kB Preview Download
md5:02d5be6ebfb86bc8a5e286894e997ab9
14.4 kB Preview Download
md5:d551de788718f443a5b43f2df4e97825
14.5 kB Preview Download
md5:671766cb4edf9e34e89980529118d391
14.4 kB Preview Download
md5:edc56367a53cbecd10221e0b3d4997cc
14.5 kB Preview Download
md5:de544258edef4e409ef8ee9f619ffe6a
10.5 kB Preview Download
md5:bb9689fc65c4827eb2199f3a145598c6
10.5 kB Preview Download
md5:758042ad008b63d3b54fd0ca55410990
10.5 kB Preview Download
md5:2528de81eae7d9153ae42c6ef80a3047
10.5 kB Preview Download
md5:f64122802f6b305a1cf8c02c7a921086
10.5 kB Preview Download
md5:a34890f4868ee34b439a76a8b8f5e411
10.6 kB Preview Download
md5:371cefe8e03979201fb5784da22825db
12.5 kB Preview Download
md5:68cb889002101236ee59c7cce28463d5
12.5 kB Preview Download
md5:f2193c662281c49815e31506881521fc
12.5 kB Preview Download
md5:779d26b13f48163811038610b8309fcc
5.8 kB Preview Download
md5:56a682a88db27ff746821d784a48f435
5.7 kB Preview Download
md5:79039cc98dfc976993d1a4af15b392e0
5.8 kB Preview Download
md5:31323555b44de7fc1ff0d80d973a79a0
6.7 kB Preview Download
md5:56c9d609ab57fcbe4e5d783702d59e58
6.6 kB Preview Download
md5:568b6b2f499475869d9cf102f63072a2
6.7 kB Preview Download
md5:b0a94970c299d5fccd6fedadd6ac76bb
6.7 kB Preview Download
md5:eb968e7323790b5a633faef9e458fa0e
6.7 kB Preview Download
md5:e4d1d9f22c449fe93d0a407bbbb92c14
6.7 kB Preview Download
md5:38631404cbe099dd4b25d4f2b2fe818f
4.9 kB Preview Download
md5:fa58f2677e4cd8911c10474f619cbe8c
4.8 kB Preview Download
md5:825a81e547b78be1a0e5a2d505eef902
4.9 kB Preview Download
md5:35cf329bf7db892abac46e1618430a7f
4.8 kB Preview Download
md5:121cb4fad475936dbba08f17bef96817
4.9 kB Preview Download
md5:ac38e61b6940210948c8ad9fc34efc96
4.8 kB Preview Download
md5:a13111b998f73d966897541b3609bcd6
5.8 kB Preview Download
md5:19f2ec88a9ef56091d89c178dc602d38
5.7 kB Preview Download
md5:c220885bc621d9b1ea985ee2ea8638a4
5.8 kB Preview Download

Additional details

Related works

Is supplement to
Journal article: 10.1016/j.cie.2018.09.023 (DOI)