Published July 23, 2021
| Version v2
Poster
Open
Identify Transit Signals with Deep Learning Based Object Detection Algorithm
- 1. Tsung-Dao Lee Institute, Shanghai Jiao Tong University
- 2. Megvii Technology
- 3. National Astronomical Observatories, Chinese Academy of Sciences
Description
Deep learning algorithms are widely used in many fields of astronomy, and have a wide range of applications in transiting exoplanet detection and classification. We have trained an neural network using two-dimensional object detection algorithm with Kepler and TESS light curves. Our network outputs excellent performance on Kepler and TESS data. The detected transits can amplify their periodicity and our network can be easily used to find single transiting events and cluster multiple transits.
Files
poster2.pdf
Files
(2.5 MB)
Name | Size | Download all |
---|---|---|
md5:bdbe8ca8616f3ecd26971c3d76c33726
|
653.7 kB | Preview Download |
md5:1cda0edf01df0c3461ce5647575afdf1
|
1.8 MB | Preview Download |
Additional details
Related works
- References
- Preprint: https://arxiv.org/abs/2108.00670 (URL)
References
- Pearson, K. A., Palafox, L., & Griffith, C. A. 2018, MNRAS, 474, 478, doi: 10.1093/mnras/stx2761
- Zucker, S., & Giryes, R. 2018, AJ, 155, 147, doi: 10.3847/1538-3881/aaae05
- Shallue, C. J., & Vanderburg, A. 2018, AJ, 155, 94, doi: 10.3847/1538-3881/aa9e09
- Ansdell, M., Ioannou, Y., Osborn, H. P., et al. 2018, ApJL, 869, L7, doi: 10.3847/2041-8213/aaf23b
- Dattilo, A., Vanderburg, A., Shallue, C. J., et al. 2019, AJ, 157, 169, doi: 10.3847/1538-3881/ab0e12
- Yu, L., Vanderburg, A., Huang, C., et al. 2019, AJ, 158, 25, doi: 10.3847/1538-3881/ab21d6
- Osborn, H. P., Ansdell, M., Ioannou, Y., et al. 2020, A&A, 633, A53, doi: 10.1051/0004-6361/201935345
- Schanche, N., Collier Cameron, A., Hébrard, G., et al. 2019, MNRAS, 483, 5534, doi: 10.1093/mnras/sty3146
- Chaushev, A., Raynard, L., Goad, M. R., et al. 2019, MNRAS, 488, 5232, doi: 10.1093/mnras/stz2058
- Olmschenk, G., Ishitani Silva, S., Rau, G., et al. 2021, AJ, 161, 273, doi: 10.3847/1538-3881/abf4c6