Published July 29, 2021 | Version v2
Dataset Open

Data for manuscript: "Longitudinal Analysis of Sentiment and Emotion in News Media Headlines Using Automated Labelling with Transformer Language Models"

Creators

  • 1. NA

Description

This data set contains automated sentiment and emotionality annotations of 23 million headlines from 47 popular news media outlets popular in the United States. 

The set of 47 news media outlets analysed (listed in Figure 1 of the main manuscript) was derived from the AllSides organization 2019 Media Bias Chart v1.1. The human ratings of outlets’ ideological leanings were also taken from this chart and are listed in Figure 2 of the main manuscript. 

News articles headlines from the set of outlets analyzed in the manuscript are available in the outlets’ online domains and/or public cache repositories such as The Internet Wayback Machine, Google cache and Common Crawl. Articles headlines were located in articles’ HTML raw data using outlet-specific XPath expressions. 

The temporal coverage of headlines across news outlets is not uniform. For some media organizations, news articles availability in online domains or Internet cache repositories becomes sparse for earlier years. Furthermore, some news outlets popular in 2019, such as The Huffington Post or Breitbart, did not exist in the early 2000’s. Hence, our data set is sparser in headlines sample size and representativeness for earlier years in the 2000-2019 timeline. Nevertheless, 18 outlets in our data set have chronologically continuous partial or full headline data availability fulfilling our inclusive criteria (see manuscript Methods) since the year 2000. Figure S 1 in the SI reports the number of headlines per outlet and per year in our analysis.

In a small percentage of articles, outlet specific XPath expressions might fail to properly capture the content of the headline due to the heterogeneity of HTML elements and CSS styling combinations with which articles text content is arranged in outlets online domains. After manual testing, we determined that the percentage of headlines following in this category is very small. Additionally, our method might miss detecting some articles in the online domains of news outlets. To conclude, in a data analysis of over 23 million headlines, we cannot manually check the correctness of every single data instance and hundred percent accuracy at capturing headlines’ content is elusive due to the small number of difficult to detect boundary cases such as incorrect HTML markup syntax in online domains. Overall however, we are confident that our headlines set is representative of headlines in print news media content for the studied time period and outlets analyzed.

The list of compressed files in this data set is listed next:

-analysisScripts.rar contains the analysis scripts used in the main manuscript as well as aggregated data of sentiment and emotionality automated annotations of the headlines and human annotations of a subset of headlines sentiment and emotionality used as ground truth. 

-models.rar contains the Transformer sentiment and emotion annotation models used in the analysis. Namely: 

Siebert/sentiment-roberta-large-english from https://huggingface.co/siebert/sentiment-roberta-large-english. This model is a fine-tuned checkpoint of RoBERTa-large (Liu et al. 2019). It enables reliable binary sentiment analysis for various types of English-language text. For each instance, it predicts either positive (1) or negative (0) sentiment. The model was fine-tuned and evaluated on 15 data sets from diverse text sources to enhance generalization across different types of texts (reviews, tweets, etc.). See more information from the original authors at https://huggingface.co/siebert/sentiment-roberta-large-english

DistilbertSST2.rar is the default sentiment classification model of the HuggingFace Transformer library https://huggingface.co/ This model is only used to replicate the results of the sentiment analysis with sentiment-roberta-large-english 

DistilRoberta j-hartmann/emotion-english-distilroberta-base from https://huggingface.co/j-hartmann/emotion-english-distilroberta-base. The model is a fine-tuned checkpoint of DistilRoBERTa-base. The model allows annotation of English text with  Ekman's 6 basic emotions, plus a neutral class. The model was trained on 6 diverse datasets. Please refer to the original author at https://huggingface.co/j-hartmann/emotion-english-distilroberta-base for an overview of the data sets used for fine tuning. https://huggingface.co/j-hartmann/emotion-english-distilroberta-base

-headlinesDataWithSentimentLabelsAnnotationsFromSentimentRobertaLargeModel.rar URLs of headlines analyzed and the sentiment annotations of the siebert/sentiment-roberta-large-english Transformer model. https://huggingface.co/siebert/sentiment-roberta-large-english

-headlinesDataWithSentimentLabelsAnnotationsFromDistilbertSST2.rar URLs of headlines analyzed and the sentiment annotations of the default HuggingFace sentiment analysis model fine-tuned on the SST-2 dataset. https://huggingface.co/

-headlinesDataWithEmotionLabelsAnnotationsFromDistilRoberta.rar URLs of headlines analyzed and the emotion categories annotations of the j-hartmann/emotion-english-distilroberta-base Transformer model. https://huggingface.co/j-hartmann/emotion-english-distilroberta-base

Files

Files (4.0 GB)

Name Size Download all
md5:5f1fff6f77a43daf238fe45f1fbf354a
5.0 MB Download
md5:83fb3303617e4f72259d1ac502fc2213
597.1 MB Download
md5:12c4ef8feb0d02f93e252eced9faf765
772.1 MB Download
md5:041934d07d94e857b382d455f9605e6a
751.1 MB Download
md5:c10d6b14b5cd208d022d8be3878745ad
1.9 GB Download