Published May 2, 2016 | Version v1
Thesis Open

Magnetic Influences on the Solar Wind

  • 1. Harvard University

Contributors

Supervisor:

  • 1. University of Colorado - Boulder

Description

This is a Dissertation presented to the Department of Astronomy at Harvard University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Astronomy and Astrophysics.

Abstract:

The steady, supersonic outflow from the Sun we call the solar wind was first posited in the 1950s and initial theories rightly linked the acceleration of the wind to the existence of the million-degree solar corona. Still today, the wind acceleration mechanisms and the coronal heating processes remain unsolved challenges in solar physics. In this work, I seek to answer a portion of the mystery by focusing on a particular acceleration process: Alfven waves launched by the motion of magnetic field footpoints in the photosphere. The entire corona is threaded with magnetic loops and flux tubes that open up into the heliosphere. I have sought a better understanding of the role these magnetic fields play in determining solar wind properties in open flux tubes. After an introduction of relevant material, I discuss my parameter study of magnetic field profiles and the statistical understanding we can draw from the resulting steady-state wind. In the chapter following, I describe how I extended this work to consider time dependence in the turbulent heating by Alfven waves in three dimensional simulations. The bursty nature of this heating led to a natural next step that expands my work to include not only the theoretical, but also a project to analyze observations of small network jets in the chromosphere and transition region, and the underlying photospheric magnetic field that forms thresholds in jet production. In summary, this work takes a broad look at the extent to which Alfven-wave-driven turbulent heating can explain measured solar wind properties and other observed phenomena.

 

Files

thesis_copy_to_format_for_arxiv.zip

Files (61.0 MB)

Name Size Download all
md5:90caed560eab0e995e0feeb4dbb32c39
44.4 MB Preview Download
md5:d438110dcc2df3cd2757aa945bf3d095
16.5 MB Preview Download

Additional details

References

  • [1] H. Alfv ́en. On the solar corona. Arkiv f ̈or Matematik, Astronomi, och Fysik (Band 27A), 25:1–23, 1941.
  • [2] H. Alfv ́en. Magneto hydrodynamic waves, and the heating of the solar corona. MNRAS, 107:211, 1947.
  • [3] M. D. Altschuler and G. Newkirk. Magnetic Fields and the Structure of the Solar Corona. I: Methods of Calculating Coronal Fields. Sol. Phys., 9:131–149, September 1969.
  • [4] S. K. Antiochos, Z. Miki ́c, V. S. Titov, R. Lionello, and J. A. Linker. A Model for the Sources of the Slow Solar Wind. ApJ, 731:112, April 2011.
  • [5] C. N. Arge and V. J. Pizzo. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res., 105:10465–10480, May 2000.
  • [6] M. Asgari-Targhi and A. A. van Ballegooijen. Model for Alfv ́en Wave Turbu- lence in Solar Coronal Loops: Heating Rate Profiles and Temperature Fluctu- ations. ApJ, 746:81, February 2012.
  • [7] M. Asgari-Targhi, A. A. van Ballegooijen, S. R. Cranmer, and E. E. DeLuca. The Spatial and Temporal Dependence of Coronal Heating by Alfv ́en Wave Turbulence. ApJ, 773:111, August 2013.
  • [8] M. Asgari-Targhi, A. A. van Ballegooijen, and S. Imada. Comparison of Ex- treme Ultraviolet Imaging Spectrometer Observations of Solar Coronal Loops with Alfv ́en Wave Turbulence Models. ApJ, 786:28, May 2014.
  • [9] W. I. Axford and J. F. McKenzie. The origin of high speed solar wind streams. In E. Marsch and R. Schwenn, editors, Solar Wind Seven Colloquium, pages 1–5, 1992.
  • [10] W. I. Axford, J. F. McKenzie, G. V. Sukhorukova, M. Banaszkiewicz, A. Czechowski, and R. Ratkiewicz. Acceleration of the High Speed Solar Wind in Coronal Holes. Space Sci. Rev., 87:25–41, January 1999.
  • [11] M. Banaszkiewicz, W. I. Axford, and J. F. McKenzie. An analytic solar mag- netic field model. A&A, 337:940–944, September 1998.
  • [12] J. M. Beckers. Solar Spicules (Invited Review Paper). Sol. Phys., 3:367–433, March 1968.
  • [13] J. M. Beckers. Solar Spicules. ARA&A, 10:73, 1972.
  • [14] A. Bhattacharjee, C. S. Ng, and S. R. Spangler. Weakly Compressible Mag- netohydrodynamic Turbulence in the Solar Wind and the Interstellar Medium. ApJ, 494:409–418, February 1998.
  • [15] L. Biermann. U ̈ber die Ursache der chromosph ̈arischen Turbulenz und des UV- Exzesses der Sonnenstrahlung. ZAp, 25:161, 1948.
  • [16] L. Biermann. Kometenschweife und solare Korpuskularstrahlung. ZAp, 29:274, 1951.
  • [17] L. Biermann. Solar corpuscular radiation and the interplanetary gas. The Observatory, 77:109–110, June 1957.
  • [18] J. Blue, S. B. Bayram, and S. D. Marcum. Creating, implementing, and sus- taining an advanced optical spectroscopy laboratory course. American Journal of Physics, 78:503–509, May 2010.
  • [19] S. Boldyrev, J. Mason, and F. Cattaneo. Dynamic Alignment and Exact Scaling Laws in Magnetohydrodynamic Turbulence. ApJ, 699:L39–L42, July 2009.
  • [20] S. Bourouaine, D. Verscharen, B. D. G. Chandran, B. A. Maruca, and J. C. Kasper. Limits on Alpha Particle Temperature Anisotropy and Differential Flow from Kinetic Instabilities: Solar Wind Observations. ApJ, 777:L3, November 2013.
  • [21] S. Bravo and G. A. Stewart. Fast and Slow Wind from Solar Coronal Holes. ApJ, 489:992, November 1997.
  • [22] A. Buergi and J. Geiss. Helium and minor ions in the corona and solar wind - Dynamics and charge states. Sol. Phys., 103:347–383, February 1986.
  • [23] B. D. G. Chandran, T. J. Dennis, E. Quataert, and S. D. Bale. Incorporating Ki- netic Physics into a Two-fluid Solar-wind Model with Temperature Anisotropy and Low-frequency Alfv ́en-wave Turbulence. ApJ, 743:197, December 2011.
  • [24] B. D. G. Chandran, B. Li, B. N. Rogers, E. Quataert, and K. Germaschewski. Perpendicular Ion Heating by Low-frequency Alfv ́en-wave Turbulence in the Solar Wind. ApJ, 720:503–515, September 2010.
  • [25] B. D. G. Chandran, E. Quataert, G. G. Howes, J. V. Hollweg, and W. Dorland. The Turbulent Heating Rate in Strong Magnetohydrodynamic Turbulence with Nonzero Cross Helicity. ApJ, 701:652–657, August 2009.
  • [26] B. D. G. Chandran, D. Verscharen, E. Quataert, J. C. Kasper, P. A. Isenberg, and S. Bourouaine. Stochastic Heating, Differential Flow, and the Alpha-to- proton Temperature Ratio in the Solar Wind. ApJ, 776:45, October 2013.
  • [27] S. Chapman and H. Zirin. Notes on the Solar Corona and the Terrestrial Ionosphere. Smithsonian Contributions to Astrophysics, 2:1, 1957.
  • [28] C. H. K. Chen, A. Mallet, A. A. Schekochihin, T. S. Horbury, R. T. Wicks, and S. D. Bale. Three-dimensional Structure of Solar Wind Turbulence. ApJ, 758:120, October 2012.
  • [29] G. F. Chew, M. L. Goldberger, and F. E. Low. The Boltzmann Equation and the One-Fluid Hydromagnetic Equations in the Absence of Particle Collisions. Proceedings of the Royal Society of London Series A, 236:112–118, July 1956.
  • [30] J. Cho, A. Lazarian, and E. T. Vishniac. Simulations of Magnetohydrodynamic Turbulence in a Strongly Magnetized Medium. ApJ, 564:291–301, January 2002.
  • [31] J. W. Cirtain, L. Golub, A. R. Winebarger, B. de Pontieu, K. Kobayashi, R. L. Moore, R. W. Walsh, K. E. Korreck, M. Weber, P. McCauley, A. Title, S. Kuzin, and C. E. Deforest. Energy release in the solar corona from spatially resolved magnetic braids. Nature, 493:501–503, January 2013.
  • [32] O. Cohen, I. V. Sokolov, I. I. Roussev, C. N. Arge, W. B. Manchester, T. I. Gombosi, R. A. Frazin, H. Park, M. D. Butala, F. Kamalabadi, and M. Velli. A Semiempirical Magnetohydrodynamical Model of the Solar Wind. ApJ, 654:L163–L166, January 2007.
  • [33] S. R. Cranmer. Coronal Holes and the High-Speed Solar Wind. Space Sci. Rev., 101:229–294, August 2002.
  • [34] S. R. Cranmer. Coronal Holes. Living Reviews in Solar Physics, 6:3, September 2009.
  • [35] S. R. Cranmer. Testing Models of Accretion-Driven Coronal Heating and Stellar Wind Acceleration for T Tauri Stars. ApJ, 706:824–843, November 2009.
  • [36] S. R. Cranmer, M. Asgari-Targhi, M. P. Miralles, J. C. Raymond, L. Strachan, H. Tian, and L. N. Woolsey. The Role of Turbulence in Coronal Heating and Solar Wind Expansion. Phil. Trans. Royal Soc. A, 373:20140148, December 2015.
  • [37] S. R. Cranmer, A. V. Panasyuk, and J. L. Kohl. Improved Constraints on the Preferential Heating and Acceleration of Oxygen Ions in the Extended Solar Corona. ApJ, 678:1480–1497, May 2008.
  • [38] S. R. Cranmer and S. H. Saar. Testing a Predictive Theoretical Model for the Mass Loss Rates of Cool Stars. ApJ, 741:54, November 2011.
  • [39] S. R. Cranmer and A. A. van Ballegooijen. Alfv ́enic Turbulence in the Ex- tended Solar Corona: Kinetic Effects and Proton Heating. ApJ, 594:573–591, September 2003.
  • [40] S. R. Cranmer and A. A. van Ballegooijen. On the Generation, Propagation, and Reflection of Alfv ́en Waves from the Solar Photosphere to the Distant Heliosphere. ApJS, 156:265–293, February 2005.
  • [41] S. R. Cranmer and A. A. van Ballegooijen. Can the Solar Wind be Driven by Magnetic Reconnection in the Sun’s Magnetic Carpet? ApJ, 720:824–847, September 2010.
  • [42] S. R. Cranmer and A. A. van Ballegooijen. Proton, Electron, and Ion Heating in the Fast Solar Wind from Nonlinear Coupling between Alfv ́enic and Fast-mode Turbulence. ApJ, 754:92, August 2012.
  • [43] S. R. Cranmer, A. A. van Ballegooijen, and R. J. Edgar. Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence. ApJS, 171:520–551, August 2007.
  • [44] S. R. Cranmer, A. A. van Ballegooijen, and L. N. Woolsey. Connecting the Sun’s High-resolution Magnetic Carpet to the Turbulent Heliosphere. ApJ, 767:125, April 2013.
  • [45] S. R. Cranmer, D. J. Wilner, and M. A. MacGregor. Constraining a Model of Turbulent Coronal Heating for AU Microscopii with X-Ray, Radio, and Mil- limeter Observations. ApJ, 772:149, August 2013.
  • [46] S. R. Cranmer and L. N. Woolsey. Driving Solar Spicules and Jets with Magne- tohydrodynamic Turbulence: Testing a Persistent Idea. ApJ, 812:71, October 2015.
  • [47] N. U. Crooker, S. K. Antiochos, X. Zhao, and M. Neugebauer. Global network of slow solar wind. Journal of Geophysical Research (Space Physics), 117:4104, April 2012.
  • [48] N. U. Crooker, J. T. Gosling, V. Bothmer, R. J. Forsyth, P. R. Gazis, A. Hewish, T. S. Horbury, D. S. Intriligator, J. R. Jokipii, J. K ́ota, A. J. Lazarus, M. A. Lee, E. Lucek, E. Marsch, A. Posner, I. G. Richardson, E. C. Roelof, J. M. Schmidt, G. L. Siscoe, B. T. Tsurutani, and R. F. Wimmer-Schweingruber. CIR Mor- phology, Turbulence, Discontinuities, and Energetic Particles. Space Sci. Rev., 89:179–220, July 1999.
  • [49] R. M. Crutcher, B. Wandelt, C. Heiles, E. Falgarone, and T. H. Troland. Mag- netic Fields in Interstellar Clouds from Zeeman Observations: Inference of Total Field Strengths by Bayesian Analysis. ApJ, 725:466–479, December 2010.
  • [50] B. De Pontieu. Numerical simulations of spicules driven by weakly-damped Alfv ́en waves. I. WKB approach. A&A, 347:696–710, July 1999.
  • [51] B. De Pontieu, M. Carlsson, L. H. M. Rouppe van der Voort, R. J. Rutten, V. H. Hansteen, and H. Watanabe. Ubiquitous Torsional Motions in Type II Spicules. ApJ, 752:L12, June 2012.
  • [52] B. De Pontieu, S. McIntosh, V. H. Hansteen, M. Carlsson, C. J. Schrijver, T. D. Tarbell, A. M. Title, R. A. Shine, Y. Suematsu, S. Tsuneta, Y. Katsukawa, K. Ichimoto, T. Shimizu, and S. Nagata. A Tale of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere. PASJ, 59:S655–S662, November 2007.
  • [53] B. De Pontieu, S. W. McIntosh, M. Carlsson, V. H. Hansteen, T. D. Tarbell, C. J. Schrijver, A. M. Title, R. A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, and S. Nagata. Chromospheric Alfv ́enic Waves Strong Enough to Power the Solar Wind. Science, 318:1574–, December 2007.
  • [54] B. De Pontieu, A. M. Title, J. R. Lemen, G. D. Kushner, D. J. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, J. F. Drake, D. W. Duncan, S. Freeland, G. F. Heyman, C. Hoffman, N. E. Hurlburt, R. W. Lindgren, D. Mathur, R. Rehse, D. Sabolish, R. Seguin, C. J. Schrijver, T. D. Tarbell, J.- P. Wu ̈lser, C. J. Wolfson, C. Yanari, J. Mudge, N. Nguyen-Phuc, R. Timmons, R. van Bezooijen, I. Weingrod, R. Brookner, G. Butcher, B. Dougherty, J. Eder, V. Knagenhjelm, S. Larsen, D. Mansir, L. Phan, P. Boyle, P. N. Cheimets, E. E. DeLuca, L. Golub, R. Gates, E. Hertz, S. McKillop, S. Park, T. Perry, W. A. Podgorski, K. Reeves, S. Saar, P. Testa, H. Tian, M. Weber, et al. The Interface Region Imaging Spectrograph (IRIS). Sol. Phys., 289:2733–2779, July 2014.
  • [55] J. M. Dickey and F. J. Lockman. H I in the Galaxy. ARA&A, 28:215–261, 1990.
  • [56] P. Dmitruk and D. O. Go ́mez. Turbulent Coronal Heating and the Distribution of Nanoflares. ApJ, 484:L83–L86, July 1997.
  • [57] P. Dmitruk, D. O. Go ́mez, and E. E. DeLuca. Magnetohydrodynamic Tur- bulence of Coronal Active Regions and the Distribution of Nanoflares. ApJ, 505:974–983, October 1998.
  • [58] P. Dmitruk and W. H. Matthaeus. Low-Frequency Waves and Turbulence in an Open Magnetic Region: Timescales and Heating Efficiency. ApJ, 597:1097– 1105, November 2003.
  • [59] P. Dmitruk, W. H. Matthaeus, L. J. Milano, S. Oughton, G. P. Zank, and D. J. Mullan. Coronal Heating Distribution Due to Low-Frequency, Wave-driven Turbulence. ApJ, 575:571–577, August 2002.
  • [60] P. Dmitruk, W. H. Matthaeus, and N. Seenu. Test Particle Energization by Current Sheets and Nonuniform Fields in Magnetohydrodynamic Turbulence. ApJ, 617:667–679, December 2004.
  • [61] P. Dmitruk, L. J. Milano, and W. H. Matthaeus. Wave-driven Turbulent Coro- nal Heating in Open Field Line Regions: Nonlinear Phenomenological Model. ApJ, 548:482–491, February 2001.
  • [62] M. Dobrowolny, A. Mangeney, and P. Veltri. Fully developed anisotropic hydro- magnetic turbulence in interplanetary space. Physical Review Letters, 45:144– 147, July 1980.
  • [63] B. Edl ́en. Die Deutung der Emissionslinien im Spektrum der Sonnenkorona. Mit 6 Abbildungen. ZAp, 22:30, 1943.
  • [64] S. J. Edwards, A. R. Yeates, F.-X. Bocquet, and D. H. Mackay. Influence of Non-Potential Coronal Magnetic Topology on Solar-Wind Models. Sol. Phys., 290:2791–2808, October 2015.
  • [65] G. Einaudi, P. Boncinelli, R. B. Dahlburg, and J. T. Karpen. Formation of the slow solar wind in a coronal streamer. J. Geophys. Res., 104:521–534, January 1999.
  • [66] G. Einaudi and M. Velli. The distribution of flares, statistics of magnetohy- drodynamic turbulence and coronal heating. Physics of Plasmas, 6:4146–4153, November 1999.
  • [67] G. Einaudi, M. Velli, H. Politano, and A. Pouquet. Energy Release in a Tur- bulent Corona. ApJ, 457:L113, February 1996.
  • [68] M. Elitzur, editor. Astronomical masers, volume 170 of Astrophysics and Space Science Library, 1992.
  • [69] H. A. Elliott, C. J. Henney, D. J. McComas, C. W. Smith, and B. J. Vasquez. Temporal and radial variation of the solar wind temperature-speed relationship. Journal of Geophysical Research (Space Physics), 117:9102, September 2012.
  • [70] D. F. Elmore, T. Rimmele, R. Casini, S. Hegwer, J. Kuhn, H. Lin, J. P. Mc- Mullin, K. Reardon, W. Schmidt, A. Tritschler, and F. Wo ̈ger. The Daniel K. Inouye Solar Telescope first light instruments and critical science plan. In Ground-based and Airborne Instrumentation for Astronomy V, volume 9147 of Proc. SPIE, page 914707, July 2014.
  • [71] V. G. Eselevich. On the structure of coronal streamer belts. J. Geophys. Res., 103:2021, February 1998.
  • [72] V. G. Eselevich, V. G. Fainshtein, and G. V. Rudenko. Study of the struc- ture of streamer belts and chains in the solar corona. Sol. Phys., 188:277–297, September 1999.
  • [73] D. Falconer, R. Moore, N. Barghouty, S. K. Tiwari, and I. Khazanov. Center- to-Limb Variation of Deprojection Errors in SDO/HMI Vector Magnetograms. In AAS/AGU Triennial Earth-Sun Summit, volume 1 of AAS/AGU Triennial Earth-Sun Summit, page 402.04, April 2015.
  • [74] L. A. Fisk. Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res.(Space Physics), 108:1157, April 2003.
  • [75] L. A. Fisk, N. A. Schwadron, and T. H. Zurbuchen. Acceleration of the fast solar wind by the emergence of new magnetic flux. J. Geophys. Res., 104:19765– 19772, September 1999.
  • [76] N. J. Fox, M. C. Velli, S. D. Bale, R. Decker, A. Driesman, R. A. Howard, J. C. Kasper, J. Kinnison, M. Kusterer, D. Lario, M. K. Lockwood, D. J. McComas, N. E. Raouafi, and A. Szabo. The Solar Probe Plus Mission: Humanity’s First Visit to Our Star. Space Sci. Rev., November 2015.
  • [77] K. Fujiki, M. Hirano, M. Kojima, M. Tokumaru, D. Baba, M. Yamashita, and K. Hakamada. Relation between solar wind velocity and properties of its source region. Advances in Space Research, 35:2185–2188, 2005.
  • [78] S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet. A weak turbulence theory for incompressible magnetohydrodynamics. Journal of Plasma Physics, 63:447–488, June 2000.
  • [79] S. P. Gary, M. D. Montgomery, W. C. Feldman, and D. W. Forslund. Pro- ton temperature anisotropy instabilities in the solar wind. J. Geophys. Res., 81:1241–1246, March 1976.
  • [80] S. P. Gary, L. Yin, and D. Winske. Alfv ́en-cyclotron scattering of solar wind ions: Hybrid simulations. Journal of Geophysical Research (Space Physics), 111:A06105, June 2006.
  • [81] J. Geiss, G. Gloeckler, and R. von Steiger. Origin of the Solar Wind From Composition Data. Space Sci. Rev., 72:49–60, April 1995.
  • [82] G. Gloeckler, T. H. Zurbuchen, and J. Geiss. Implications of the observed anticorrelation between solar wind speed and coronal electron temperature. Journal of Geophysical Research (Space Physics), 108:1158, April 2003.
  • [83] L. Goldberg, R. W. Noyes, W. H. Parkinson, E. M. Reeves, and G. L. Withbroe. Ultraviolet Solar Images from Space. Science, 162:95–99, October 1968.
  • [84] P. Goldreich and S. Sridhar. Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. ApJ, 438:763–775, January 1995.
  • [85] D. O. Gomez, P. A. Dmitruk, and L. J. Milano. Recent theoretical results on coronal heating. Sol. Phys., 195:299–318, August 2000.
  • [86] J. T. Gosling, J. R. Asbridge, S. J. Bame, and W. C. Feldman. Solar wind stream interfaces. J. Geophys. Res., 83:1401–1412, April 1978.
  • [87] R. Grappin, J. Leorat, and A. Pouquet. Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation. A&A, 126:51–58, September 1983.
  • [88] W. Grotrian. Zur Frage der Deutung der Linien im Spektrum der Sonnenkorona. Naturwissenschaften, 27:214–214, March 1939.
  • [89] I. G. Hannah, H. S. Hudson, M. Battaglia, S. Christe, J. Kaˇsparova ́, S. Krucker, M. R. Kundu, and A. Veronig. Microflares and the Statistics of X-ray Flares. Space Sci. Rev., 159:263–300, September 2011.
  • [90] C. Heiles. The interstellar magnetic field. ARA&A, 14:1–22, 1976.
  • [91] C. Heiles, A. A. Goodman, C. F. McKee, and E. G. Zweibel. Magnetic fields in star-forming regions - Observations. In E. H. Levy and J. I. Lunine, editors, Protostars and Planets III, pages 279–326, 1993.
  • [92] P. Hellinger, P. Tra ́vn ́ıˇcek, J. C. Kasper, and A. J. Lazarus. Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations. Geo- phys. Res. Lett., 33:L09101, May 2006.
  • [93] D. L. Hendrix and G. van Hoven. Magnetohydrodynamic Turbulence and Im- plications for Solar Coronal Heating. ApJ, 467:887, August 1996.
  • [94] J. C. Higdon. Density fluctuations in the interstellar medium: Evidence for anisotropic magnetogasdynamic turbulence. I - Model and astrophysical sites. ApJ, 285:109–123, October 1984.
  • [95] A. K. Higginson, S. K. Antiochos, C. R. DeVore, and T. H. Zurbuchen. 3D Simulations of Helmet Streamer Dynamics and Implications for the Slow Solar Wind. In AAS/AGU Triennial Earth-Sun Summit, volume 1 of AAS/AGU Triennial Earth-Sun Summit, page 108.04, April 2015.
  • [96] J. T. Hoeksema. Structure and evolution of the large scale solar and heliospheric magnetic fields. PhD thesis, Stanford Univ., CA., September 1984.
  • [97] J. T. Hoeksema and P. H. Scherrer. An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976-1985. Sol. Phys., 105:205–211, May 1986.
  • [98] J. V. Hollweg. Density fluctuations driven by Alfv ́en waves. J. Geophys. Res., 76:5155, 1971.
  • [99] J. V. Hollweg. Transition region, corona, and solar wind in coronal holes. J. Geophys. Res., 91:4111–4125, April 1986.
  • [100] J. V. Hollweg and P. A. Isenberg. Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction. Journal of Geophysical Research (Space Physics), 107:1147, July 2002.
  • [101] J. V. Hollweg, S. Jackson, and D. Galloway. Alfven waves in the solar atmo- sphere. III - Nonlinear waves on open flux tubes. Sol. Phys., 75:35–61, January 1982.
  • [102] T. E. Holzer. Effects of rapidly diverging flow, heat addition, and momentum addition in the solar wind and stellar winds. J. Geophys. Res., 82:23–35, January 1977.
  • [103] T. S. Horbury, R. T. Wicks, and C. H. K. Chen. Anisotropy in Space Plasma Turbulence: Solar Wind Observations. Space Sci. Rev., 172:325–342, November 2012.
  • [104] M. Hossain, P. C. Gray, D. H. Pontius, Jr., W. H. Matthaeus, and S. Oughton. Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence. Physics of Fluids, 7:2886–2904, November 1995.
  • [105] G. G. Howes. A dynamical model of plasma turbulence in the solar wind. Philo- sophical Transactions of the Royal Society of London Series A, 373:20140145– 20140145, April 2015.
  • [106] S. A. Jacques. Momentum and energy transport by waves in the solar atmo- sphere and solar wind. ApJ, 215:942–951, August 1977.
  • [107] E. K. Kaghashvili, R. A. Quinn, and J. V. Hollweg. Driven Waves as a Diag- nostics Tool in the Solar Corona. ApJ, 703:1318–1322, October 2009.
  • [108] J. C. Kasper, A. J. Lazarus, and S. P. Gary. Hot Solar-Wind Helium: Direct Evidence for Local Heating by Alfv ́en-Cyclotron Dissipation. Physical Review Letters, 101(26):261103, December 2008.
  • [109] J. C. Kasper, B. A. Maruca, M. L. Stevens, and A. Zaslavsky. Sensitive Test for Ion-Cyclotron Resonant Heating in the Solar Wind. Physical Review Letters, 110(9):091102, March 2013.
  • [110] J. A. Klimchuk. On Solving the Coronal Heating Problem. Sol. Phys., 234:41– 77, March 2006.
  • [111] J. A. Klimchuk. Key aspects of coronal heating. Philosophical Transactions of the Royal Society of London Series A, 373:20140256–20140256, April 2015.
  • [112] J. L. Kohl, R. Esser, L. D. Gardner, S. Habbal, P. S. Daigneau, E. F. Dennis, G. U. Nystrom, A. Panasyuk, J. C. Raymond, P. L. Smith, L. Strachan, A. A. van Ballegooijen, G. Noci, S. Fineschi, M. Romoli, A. Ciaravella, A. Modigliani, M. C. E. Huber, E. Antonucci, C. Benna, S. Giordano, G. Tondello, P. Ni- colosi, G. Naletto, C. Pernechele, D. Spadaro, G. Poletto, S. Livi, O. von der Lu ̈he, J. Geiss, J. G. Timothy, G. Gloeckler, A. Allegra, G. Basile, R. Brusa, B. Wood, O. H. W. Siegmund, W. Fowler, R. Fisher, and M. Jhabvala. The Ul- traviolet Coronagraph Spectrometer for the Solar and Heliospheric Observatory. Sol. Phys., 162:313–356, December 1995.
  • [113] R. A. Kopp and T. E. Holzer. Dynamics of coronal hole regions. I - Steady polytropic flows with multiple critical points. Sol. Phys., 49:43–56, July 1976.
  • [114] T. Kudoh and K. Shibata. Alfv ́en Wave Model of Spicules and Coronal Heating. ApJ, 514:493–505, March 1999.
  • [115] E. Landi and S. R. Cranmer. Ion Temperatures in the Low Solar Corona: Polar Coronal Holes at Solar Minimum. ApJ, 691:794–805, January 2009.
  • [116] Ø. Langangen, B. De Pontieu, M. Carlsson, V. H. Hansteen, G. Cauzzi, and K. Reardon. Search for High Velocities in the Disk Counterpart of Type II Spicules. ApJ, 679:L167, June 2008.
  • [117] R. B. Larson. Turbulence and star formation in molecular clouds. MNRAS, 194:809–826, March 1981.
  • [118] J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, J. F. Drake, D. W. Duncan, C. G. Edwards, F. M. Friedlaender, G. F. Heyman, N. E. Hurlburt, N. L. Katz, G. D. Kushner, M. Levay, R. W. Lindgren, D. P. Mathur, E. L. McFeaters, S. Mitchell, R. A. Rehse, C. J. Schrijver, L. A. Springer, R. A. Stern, T. D. Tarbell, J.-P. Wuelser, C. J. Wolfson, C. Yanari, J. A. Bookbinder, P. N. Cheimets, D. Caldwell, E. E. Deluca, R. Gates, L. Golub, S. Park, W. A. Podgorski, R. I. Bush, P. H. Scherrer, M. A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D. L. Windt, S. Beardsley, M. Clapp, J. Lang, and N. Waltham. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys., 275:17–40, January 2012.
  • [119] R. H. Levine, M. D. Altschuler, and J. W. Harvey. Solar sources of the in- terplanetary magnetic field and solar wind. J. Geophys. Res., 82:1061–1065, March 1977.
  • [120] R. H. Levine, M. D. Altschuler, J. W. Harvey, and B. V. Jackson. Open magnetic structures on the sun. ApJ, 215:636–651, July 1977.
  • [121] J. A. Linker, R. Lionello, Z. Miki ́c, V. S. Titov, and S. K. Antiochos. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics. ApJ, 731:110, April 2011.
  • [122] R. Lionello, M. Velli, C. Downs, J. A. Linker, Z. Miki ́c, and A. Verdini. Val- idating a Time-dependent Turbulence-driven Model of the Solar Wind. ApJ, 784:120, April 2014.
  • [123] Y. Lithwick, P. Goldreich, and S. Sridhar. Imbalanced Strong MHD Turbulence. ApJ, 655:269–274, January 2007.
  • [124] D. Mackay and A. Yeates. The Sun’s Global Photospheric and Coronal Magnetic Fields: Observations and Models. Living Reviews in Solar Physics, 9, November 2012.
  • [125] E. Marsch. Solar Wind Models from the Sun to 1 AU: Constraints by in Situ and Remote Sensing Measurements. Space Sci. Rev., 87:1–24, January 1999.
  • [126] E. Marsch. Kinetic Physics of the Solar Corona and Solar Wind. Living Reviews in Solar Physics, 3, July 2006.
  • [127] J. Mart ́ınez-Sykora, L. Rouppe van der Voort, M. Carlsson, B. De Pontieu, T. M. D. Pereira, P. Boerner, N. Hurlburt, L. Kleint, J. Lemen, T. D. Tarbell, A. Title, J.-P. Wuelser, V. H. Hansteen, L. Golub, S. McKillop, K. K. Reeves, S. Saar, P. Testa, H. Tian, S. Jaeggli, and C. Kankelborg. Internetwork Chro- mospheric Bright Grains Observed With IRIS and SST. ApJ, 803:44, April 2015.
  • [128] B. A. Maruca. Instability-Driven Limits on Ion Temperature Anisotropy in the Solar Wind: Observations and Linear Vlasov Theory. PhD thesis, Harvard University, 2012.
  • [129] B. A. Maruca, J. C. Kasper, and S. D. Bale. What Are the Relative Roles of Heating and Cooling in Generating Solar Wind Temperature Anisotropies? Physical Review Letters, 107(20):201101, November 2011.
  • [130] T. Matsumoto and K. Shibata. Nonlinear Propagation of Alfv ́en Waves Driven by Observed Photospheric Motions: Application to the Coronal Heating and Spicule Formation. ApJ, 710:1857–1867, February 2010.
  • [131] T. Matsumoto and T. K. Suzuki. Connecting the Sun and the solar wind: the self-consistent transition of heating mechanisms. MNRAS, 440:971–986, May 2014.
  • [132] W. H. Matthaeus, M. L. Goldstein, and D. A. Roberts. Evidence for the pres- ence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res., 95:20673–20683, December 1990.
  • [133] W. H. Matthaeus, S. Oughton, and Y. Zhou. Anisotropic magnetohydro- dynamic spectral transfer in the diffusion approximation. Phys. Rev. E, 79(3):035401, March 2009.
  • [134] W. H. Matthaeus, G. P. Zank, S. Oughton, D. J. Mullan, and P. Dmitruk. Coronal Heating by Magnetohydrodynamic Turbulence Driven by Reflected Low-Frequency Waves. ApJ, 523:L93–L96, September 1999.
  • [135] W. H. Matthaeus and Y. Zhou. Extended inertial range phenomenology of magnetohydrodynamic turbulence. Physics of Fluids B, 1:1929–1931, Septem- ber 1989.
  • [136] D. J. McComas. The Three-Dimensional Structure of the Solar Wind Over the Solar Cycle. In M. Velli, R. Bruno, F. Malara, and B. Bucci, editors, Solar Wind Ten, volume 679 of American Institute of Physics Conference Series, pages 33–38, September 2003.
  • [137] S. L. McGregor, W. J. Hughes, C. N. Arge, D. Odstrcil, and N. A. Schwadron. The radial evolution of solar wind speeds. Journal of Geophysical Research (Space Physics), 116:3106, March 2011.
  • [138] S. L. McGregor, W. J. Hughes, C. N. Arge, M. J. Owens, and D. Odstrcil. The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind. Journal of Geophysical Research (Space Physics), 116:3101, March 2011.
  • [139] S. W. McIntosh. Recent Observations of Plasma and Alfv ́enic Wave Energy Injection at the Base of the Fast Solar Wind. Space Sci. Rev., 172:69–87, November 2012.
  • [140] J.-P. Meyer. Elemental abundances in active regions, flares and interplanetary medium. Advances in Space Research, 13:377–390, September 1993.
  • [141] Z. Miki ́c, J. A. Linker, D. D. Schnack, R. Lionello, and A. Tarditi. Mag- netohydrodynamic modeling of the global solar corona. Physics of Plasmas, 6:2217–2224, May 1999.
  • [142] D. Montgomery. Major disruptions, inverse cascades, and the Strauss equations. Physica Scripta Volume T, 2:83–88, January 1982.
  • [143] R. L. Moore, A. C. Sterling, J. W. Cirtain, and D. A. Falconer. Solar X-ray Jets, Type-II Spicules, Granule-size Emerging Bipoles, and the Genesis of the Heliosphere. ApJ, 731:L18, April 2011.
  • [144] U. Narain and P. Ulmschneider. Chromospheric and Coronal Heating Mecha- nisms II. Space Sci. Rev., 75:453–509, February 1996.
  • [145] N. Narang, R. T. Arbacher, H. Tian, D. Banerjee, S. R. Cranmer, E. E. DeLuca, and S. McKillop. Statistical Study of Network Jets Observed in the Solar Tran- sition Region: a Comparison Between Coronal Holes and Quiet-Sun Regions. Sol. Phys., April 2016.
  • [146] M. Neugebauer and C. W. Snyder. Solar Plasma Experiment. Science, 138:1095–1097, December 1962.
  • [147] M. Neugebauer and C. W. Snyder. Mariner 2 Observations of the Solar Wind, 1, Average Properties. J. Geophys. Res., 71:4469, October 1966.
  • [148] D. Odstrcil. Modeling 3-D solar wind structure. Advances in Space Research, 32:497–506, August 2003.
  • [149] D. Odstrcil, P. Riley, and X. P. Zhao. Numerical simulation of the 12 May 1997 interplanetary CME event. Journal of Geophysical Research (Space Physics), 109:2116, February 2004.
  • [150] L. Ofman. Wave Modeling of the Solar Wind. Living Reviews in Solar Physics, 7:4, October 2010.
  • [151] K. W. Ogilvie, D. J. Chornay, R. J. Fritzenreiter, F. Hunsaker, J. Keller, J. Lo- bell, G. Miller, J. D. Scudder, E. C. Sittler, Jr., R. B. Torbert, D. Bodet, G. Needell, A. J. Lazarus, J. T. Steinberg, J. H. Tappan, A. Mavretic, and E. Gergin. SWE, A Comprehensive Plasma Instrument for the Wind Space- craft. Space Sci. Rev., 71:55–77, February 1995.
  • [152] K. W. Ogilvie, M. A. Coplan, P. Bochsler, and J. Geiss. Solar wind observa- tions with the ion composition instrument aboard the ISEE-3/ICE spacecraft. Sol. Phys., 124:167–183, March 1989.
  • [153] E. L. Olsen and E. Leer. A study of solar wind acceleration based on gyrotropic transport equations. J. Geophys. Res., 104:9963–9974, May 1999.
  • [154] N. Oppermann, H. Junklewitz, G. Robbers, M. R. Bell, T. A. Enßlin, A. Bonafede, R. Braun, J. C. Brown, T. E. Clarke, I. J. Feain, B. M. Gaensler, A. Hammond, L. Harvey-Smith, G. Heald, M. Johnston-Hollitt, U. Klein, P. P. Kronberg, S. A. Mao, N. M. McClure-Griffiths, S. P. O’Sullivan, L. Pratley, T. Robishaw, S. Roy, D. H. F. M. Schnitzeler, C. Sotomayor-Beltran, J. Stevens, J. M. Stil, C. Sunstrum, A. Tanna, A. R. Taylor, and C. L. Van Eck. An im- proved map of the Galactic Faraday sky. A&A, 542:A93, June 2012.
  • [155] S. Oughton, P. Dmitruk, and W. H. Matthaeus. A two-component phenomenol- ogy for homogeneous magnetohydrodynamic turbulence. Physics of Plasmas, 13(4):042306, April 2006.
  • [156] S. Oughton, W. H. Matthaeus, M. Wan, and K. T. Osman. Anisotropy in solar wind plasma turbulence. Phil. Trans. Royal Soc. A, 373:20140152, 2015.
  • [157] M. J. Owens and R. J. Forsyth. The Heliospheric Magnetic Field. Living Reviews in Solar Physics, 10, November 2013.
  • [158] M. J. Owens, H. E. Spence, S. McGregor, W. J. Hughes, J. M. Quinn, C. N. Arge, P. Riley, J. Linker, and D. Odstrcil. Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather, 6:S08001, August 2008.
  • [159] S. P. Owocki, T. E. Holzer, and A. J. Hundhausen. The solar wind ionization state as a coronal temperature diagnostic. ApJ, 275:354–366, December 1983.
  • [160] T. N. Parashar and C. Salem. Turbulent Dissipation Challenge: A community Driven Effort. ArXiv e-prints, March 2013.
  • [161] E. Pariat, S. K. Antiochos, and C. R. DeVore. A Model for Solar Polar Jets. ApJ, 691:61–74, January 2009.
  • [162] E. N. Parker. Dynamics of the Interplanetary Gas and Magnetic Fields. ApJ, 128:664, November 1958.
  • [163] E. N. Parker. Topological Dissipation and the Small-Scale Fields in Turbulent Gases. ApJ, 174:499, June 1972.
  • [164] E. N. Parker. Nanoflares and the solar X-ray corona. ApJ, 330:474–479, July 1988.
  • [165] C. E. Parnell and I. De Moortel. A contemporary view of coronal heating. Phil. Trans. Royal Soc. A, 370:3217–3240, July 2012.
  • [166] C. E. Parnell and P. E. Jupp. Statistical Analysis of the Energy Distribution of Nanoflares in the Quiet Sun. ApJ, 529:554–569, January 2000.
  • [167] J. M. Pasachoff. Resource Letter SPh-1: Solar Physics. American Journal of Physics, 78:890–901, September 2010.
  • [168] T. M. D. Pereira, B. De Pontieu, and M. Carlsson. Quantifying Spicules. ApJ, 759:18, November 2012.
  • [169] T. M. D. Pereira, B. De Pontieu, M. Carlsson, V. Hansteen, T. D. Tarbell, J. Lemen, A. Title, P. Boerner, N. Hurlburt, J. P. Wu ̈lser, J. Mart ́ınez-Sykora, L. Kleint, L. Golub, S. McKillop, K. K. Reeves, S. Saar, P. Testa, H. Tian, S. Jaeggli, and C. Kankelborg. An Interface Region Imaging Spectrograph First View on Solar Spicules. ApJ, 792:L15, September 2014.
  • [170] J. C. Perez and B. D. G. Chandran. Direct Numerical Simulations of Reflection- driven, Reduced Magnetohydrodynamic Turbulence from the Sun to the Alfv ́en Critical Point. ApJ, 776:124, October 2013.
  • [171] H. Peter and B. N. Dwivedi. Discovery of the Sun’s million-degree hot corona. Frontiers in Astronomy and Space Sciences, 1:2, July 2014.
  • [172] A. Petralia, F. Reale, S. Orlando, and J. A. Klimchuk. MHD modelling of coronal loops: injection of high-speed chromospheric flows. A&A, 567:A70, July 2014.
  • [173] V. Pierrard and M. Lazar. Kappa Distributions: Theory and Applications in Space Plasmas. Sol. Phys., 267:153–174, November 2010.
  • [174] V. Pizzo. A three-dimensional model of corotating streams in the solar wind. I - Theoretical foundations. J. Geophys. Res., 83:5563–5572, December 1978.
  • [175] B. Poduval and X. P. Zhao. Validating Solar Wind Prediction Using the Current Sheet Source Surface Model. ApJ, 782:L22, February 2014.
  • [176] A. F. Rappazzo, M. Velli, G. Einaudi, and R. B. Dahlburg. Nonlinear Dynamics of the Parker Scenario for Coronal Heating. ApJ, 677:1348–1366, April 2008.
  • [177] P. Riley, M. Ben-Nun, J. A. Linker, Z. Mikic, L. Svalgaard, J. Harvey, L. Bertello, T. Hoeksema, Y. Liu, and R. Ulrich. A Multi-Observatory Inter- Comparison of Line-of-Sight Synoptic Solar Magnetograms. Sol. Phys., 289:769– 792, March 2014.
  • [178] P. Riley, J. A. Linker, Z. Miki ́c, R. Lionello, S. A. Ledvina, and J. G. Luhmann. A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results. ApJ, 653:1510–1516, December 2006.
  • [179] P. Riley and R. Lionello. Mapping Solar Wind Streams from the Sun to 1 AU: A Comparison of Techniques. Sol. Phys., 270:575–592, June 2011.
  • [180] P. Riley, R. Lionello, J. A. Linker, Z. Mikic, J. Luhmann, and J. Wijaya. Global MHD Modeling of the Solar Corona and Inner Heliosphere for the Whole Heliosphere Interval. Sol. Phys., 274:361–377, December 2011.
  • [181] D. A. Roberts. Demonstrations that the Solar Wind is Not Accelerated By Waves or Turbulence. ApJ, 711:1044–1050, March 2010.
  • [182] W. O. Roberts. A Preliminary Report on Chromospheric Spicules of Extremely Short Lifetime. ApJ, 101:136, March 1945.
  • [183] R. Rosner, W. H. Tucker, and G. S. Vaiana. Dynamics of the quiescent solar corona. ApJ, 220:643–645, March 1978.
  • [184] L. Rouppe van der Voort, B. De Pontieu, T. M. D. Pereira, M. Carlsson, and V. Hansteen. Heating Signatures in the Disk Counterparts of Solar Spicules in Interface Region Imaging Spectrograph Observations. ApJ, 799:L3, January 2015.
  • [185] L. Rouppe van der Voort, J. Leenaarts, B. de Pontieu, M. Carlsson, and G. Vis- sers. On-disk Counterparts of Type II Spicules in the Ca II 854.2 nm and Hα Lines. ApJ, 705:272–284, November 2009.
  • [186] R. J. Rutten and H. Uitenbroek. CA II H(2v) and K(2v) cell grains. Sol. Phys., 134:15–71, July 1991.
  • [187] G. B. Rybicki and A. P. Lightman. Radiative processes in astrophysics. Wiley- Interscience, 1979.
  • [188] A. P. Sarma, C. L. Brogan, T. L. Bourke, M. Eftimova, and T. H. Troland. Very Large Array OH Zeeman Observations of the Star-forming Region S88B. ApJ, 767:24, April 2013.
  • [189] K. H. Schatten, J. M. Wilcox, and N. F. Ness. A model of interplanetary and coronal magnetic fields. Sol. Phys., 6:442–455, March 1969.
  • [190] P. H. Scherrer, J. Schou, R. I. Bush, A. G. Kosovichev, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, J. Zhao, A. M. Title, C. J. Schrijver, T. D. Tarbell, and S. Tomczyk. The Helioseismic and Magnetic Imager (HMI) Inves- tigation for the Solar Dynamics Observatory (SDO). Sol. Phys., 275:207–227, January 2012.
  • [191] J. T. Schmelz, S. Pathak, D. H. Brooks, G. M. Christian, and R. S. Dhaliwal. Hot Topic, Warm Loops, Cooling Plasma? Multithermal Analysis of Active Region Loops. ApJ, 795:171, November 2014.
  • [192] C. J. Schrijver, A. W. Sandman, M. J. Aschwanden, and M. L. De Rosa. The Coronal Heating Mechanism as Identified by Full-Sun Visualizations. ApJ, 615:512–525, November 2004.
  • [193] N. A. Schwadron, D. J. McComas, and C. DeForest. Relationship between Solar Wind and Coronal Heating: Scaling Laws from Solar X-Rays. ApJ, 642:1173– 1176, May 2006.
  • [194] N. A. Schwadron, D. J. McComas, H. A. Elliott, G. Gloeckler, J. Geiss, and R. von Steiger. Solar wind from the coronal hole boundaries. Journal of Geo- physical Research (Space Physics), 110:A04104, April 2005.
  • [195] P. A. Secchi. Le Soleil, volume 2. Paris: Gauthier-Villars, 1877.
  • [196] D. H. Sekse, L. Rouppe van der Voort, and B. De Pontieu. On the Temporal Evolution of the Disk Counterpart of Type II Spicules in the Quiet Sun. ApJ, 764:164, February 2013.
  • [197] H. Skogsrud, L. Rouppe van der Voort, B. De Pontieu, and T. M. D. Pereira. On the Temporal Evolution of Spicules Observed with IRIS, SDO, and Hinode. ApJ, 806:170, June 2015.
  • [198] E. J. Smith and J. H. Wolfe. Observations of interaction regions and corotating shocks between one and five AU - Pioneers 10 and 11. Geophys. Res. Lett., 3:137–140, March 1976.
  • [199] S. R. Spangler. Kinetic effects of Alfven wave nonlinearity. I - Ponderomotive density fluctuations. Physics of Fluids B, 1:1738–1746, August 1989.
  • [200] M. Stakhiv, E. Landi, S. T. Lepri, R. Oran, and T. H. Zurbuchen. On the Origin of Mid-latitude Fast Wind: Challenging the Two-state Solar Wind Paradigm. ApJ, 801:100, March 2015.
  • [201] A. C. Sterling. Solar Spicules: A Review of Recent Models and Targets for Future Observations - (Invited Review). Sol. Phys., 196:79–111, September 2000.
  • [202] H. R. Strauss. Nonlinear, three-dimensional magnetohydrodynamics of noncir- cular tokamaks. Physics of Fluids, 19:134–140, January 1976.
  • [203] T. K. Suzuki. Forecasting Solar Wind Speeds. ApJ, 640:L75–L78, March 2006.
  • [204] T. K. Suzuki and S.-I. Inutsuka. Solar winds driven by nonlinear low-frequency Alfv ́en waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds. J. Geophys. Res., 111:6101, June 2006.
  • [205] G. I. Taylor. The Spectrum of Turbulence. Royal Soc. Proceedings Series A, 164:476–490, February 1938.
  • [206] H. Tian, E. E. DeLuca, S. R. Cranmer, B. De Pontieu, H. Peter, J. Mart ́ınez- Sykora, L. Golub, S. McKillop, K. K. Reeves, M. P. Miralles, P. McCauley, S. Saar, P. Testa, M. Weber, N. Murphy, J. Lemen, A. Title, P. Boerner, N. Hurlburt, T. D. Tarbell, J. P. Wuelser, L. Kleint, C. Kankelborg, S. Jaeggli, M. Carlsson, V. Hansteen, and S. W. McIntosh. Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science, 346(27):1255711, October 2014.
  • [207] H. Tian, H. E. Potts, E. Marsch, R. Attie, and J.-S. He. Horizontal supergranule-scale motions inferred from TRACE ultraviolet observations of the chromosphere. A&A, 519:A58, September 2010.
  • [208] A. M. Title and C. J. Schrijver. The Sun’s Magnetic Carpet. In R. A. Donahue and J. A. Bookbinder, editors, Cool Stars, Stellar Systems, and the Sun, volume 154 of Astronomical Society of the Pacific Conference Series, page 345, 1998.
  • [209] C.-Y. Tu and E. Marsch. MHD structures, waves and turbulence in the solar wind: Observations and theories. Space Sci. Rev., 73:1–210, July 1995.
  • [210] A. A. van Ballegooijen. Cascade of magnetic energy as a mechanism of coronal heating. ApJ, 311:1001–1014, December 1986.
  • [211] A. A. van Ballegooijen, M. Asgari-Targhi, S. R. Cranmer, and E. E. DeLuca. Heating of the Solar Chromosphere and Corona by Alfv ́en Wave Turbulence. ApJ, 736:3, July 2011.
  • [212] A. A. van Ballegooijen and S. R. Cranmer. Hyperdiffusion as a Mechanism for Solar Coronal Heating. ApJ, 682:644–653, July 2008.
  • [213] A. A. van Ballegooijen, E. R. Priest, and D. H. Mackay. Mean Field Model for the Formation of Filament Channels on the Sun. ApJ, 539:983–994, August 2000.
  • [214] A. M. Va ́squez, A. A. van Ballegooijen, and J. C. Raymond. The Effect of Proton Temperature Anisotropy on the Solar Minimum Corona and Wind. ApJ, 598:1361–1374, December 2003.
  • [215] B. J. Vasquez and J. V. Hollweg. Formation of arc-shaped Alfv ́en waves and rotational discontinuities from oblique linearly polarized wave trains. J. Geo- phys. Res., 101:13527–13540, June 1996.
  • [216] M. Velli. From supersonic winds to accretion: Comments on the stability of stellar winds and related flows. ApJ, 432:L55–L58, September 1994.
  • [217] G. Verbanac, B. Vrˇsnak, A. Veronig, and M. Temmer. Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. A&A, 526:A20, February 2011.
  • [218] A. Verdini, M. Velli, W. H. Matthaeus, S. Oughton, and P. Dmitruk. A Turbulence-Driven Model for Heating and Acceleration of the Fast Wind in Coronal Holes. ApJ, 708:L116–L120, January 2010.
  • [219] Y.-M. Wang, R. Grappin, E. Robbrecht, and N. R. Sheeley, Jr. On the Nature of the Solar Wind from Coronal Pseudostreamers. ApJ, 749:182, April 2012.
  • [220] Y.-M. Wang and N. R. Sheeley, Jr. Solar wind speed and coronal flux-tube expansion. ApJ, 355:726–732, June 1990.
  • [221] Y.-M. Wang and N. R. Sheeley, Jr. Why fast solar wind originates from slowly expanding coronal flux tubes. ApJ, 372:L45–L48, May 1991.
  • [222] Y.-M. Wang and N. R. Sheeley, Jr. On potential field models of the solar corona. ApJ, 392:310–319, June 1992.
  • [223] Y.-M. Wang and N. R. Sheeley, Jr. Solar Implications of ULYSSES Interplan- etary Field Measurements. ApJ, 447:L143, July 1995.
  • [224] Y.-M. Wang, N. R. Sheeley, Jr., and N. B. Rich. Coronal Pseudostreamers. ApJ, 658:1340–1348, April 2007.
  • [225] Z. Wang, R. K. Ulrich, and F. V. Coroniti. Acoustic wave propagation in the so- lar atmosphere 1. Rediscussion of the linearized theory including nonstationary solutions. ApJ, 444:879–915, May 1995.
  • [226] K. Wilhelm, W. Curdt, E. Marsch, U. Schu ̈hle, P. Lemaire, A. Gabriel, J.-C. Vial, M. Grewing, M. C. E. Huber, S. D. Jordan, A. I. Poland, R. J. Thomas, M. Ku ̈hne, J. G. Timothy, D. M. Hassler, and O. H. W. Siegmund. SUMER - Solar Ultraviolet Measurements of Emitted Radiation. Sol. Phys., 162:189–231, December 1995.
  • [227] L. N. Woolsey. The Zeeman Effect in the Interstellar Medium. Wolfram Demon- strations Project, 2013.
  • [228] L. N. Woolsey. An Essay On Interactive Investigations Of The Zeeman Effect In The Interstellar Medium. JAESE, 2, June 2015.
  • [229] L. N. Woolsey and S. R. Cranmer. Turbulence-driven Coronal Heating and Improvements to Empirical Forecasting of the Solar Wind. ApJ, 787:160, June 2014.
  • [230] L. N. Woolsey and S. R. Cranmer. Time-dependent Turbulent Heating of Open Flux Tubes in the Chromosphere, Corona, and Solar Wind. ApJ, 811:136, October 2015.
  • [231] J. P. Wu ̈lser. Absolute calibration of the IRIS spectrographs, IRIS-4 Workshop, Poster 41. May 2015.
  • [232] F. Xu and J. E. Borovsky. A new four-plasma categorization scheme for the solar wind. Journal of Geophysical Research (Space Physics), 120:70–100, January 2015.
  • [233] L. Yang, J. He, H. Peter, C. Tu, W. Chen, L. Zhang, E. Marsch, L. Wang, X. Feng, and L. Yan. Injection of Plasma into the Nascent Solar Wind via Reconnection Driven by Supergranular Advection. ApJ, 770:6, June 2013.
  • [234] A. R. Yeates. Coronal Magnetic Field Evolution from 1996 to 2012: Continuous Non-potential Simulations. Sol. Phys., 289:631–648, February 2014.
  • [235] T. Yokoyama and K. Shibata. Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun. Nature, 375:42–44, May 1995.
  • [236] G. P. Zank and W. H. Matthaeus. The equations of reduced magnetohydrody- namics. Journal of Plasma Physics, 48:85–100, August 1992.
  • [237] Y. Z. Zhang, K. Shibata, J. X. Wang, X. J. Mao, T. Matsumoto, Y. Liu, and J. T. Su. Revision of Solar Spicule Classification. ApJ, 750:16, May 2012.
  • [238] X. Zhao and J. T. Hoeksema. Prediction of the interplanetary magnetic field strength. J. Geophys. Res., 100:19–33, January 1995.
  • [239] Y. Zhou and W. H. Matthaeus. Models of inertial range spectra of interplan- etary magnetohydrodynamic turbulence. J. Geophys. Res., 95:14881–14892, September 1990.
  • [240] J. B. Zirker, editor. Coronal holes and high speed wind streams: a monograph from Skylab solar workshop I. Boulder, CO: Colorado Associated University Press, 1977.
  • [241] J. B. Zirker. Coronal heating. Sol. Phys., 148:43–60, November 1993.
  • [242] T. H. Zurbuchen. A New View of the Coupling of the Sun and the Heliosphere. ARA&A, 45:297–338, September 2007.
  • [243] T. H. Zurbuchen, S. Hefti, L. A. Fisk, G. Gloeckler, and N. A. Schwadron. Magnetic structure of the slow solar wind: Constraints from composition data. J. Geophys. Res., 105:18327–18336, August 2000.