Single-cell Atlas Reveals Diagnostic Features Predicting Progressive Drug Resistance in Chronic Myeloid Leukemia
Creators
- 1. Duke-NUS Medical School
- 2. Genome Institute of Singapore
- 3. Singapore General Hospital
- 4. National Cancer Centre, Advanced Cell Therapy and Research Institute
- 5. SingHealth Duke-NUS Academic Medical Centre
- 6. Singapore General Hospital, National Cancer Centre, Advanced Cell Therapy and Research Institute
- 7. SingHealth Duke-NUS Academic Medical Centre, KK Women's and Children's Hospital
- 8. Duke-NUS Medical School, Singapore General Hospital
Description
This archive contains data of scRNAseq and CyTOF in form of Seurat objects, txt and csv files as well as R scripts for data analysis and Figure generation.
A summary of the content is provided in the following.
R scripts
Script to run Machine learning models predicting group specific marker genes: CML_Find_Markers_Zenodo.R
Script to reproduce the majority of Main and Supplementary Figures shown in the manuscript: CML_Paper_Figures_Zenodo.R
Script to run inferCNV analysis: inferCNV_Zenodo.R Script to plot NATMI analysis results:NATMI_CvsA_FC0.32_Updown_Column_plot_Zenodo.R Script to conduct sub-clustering and filtering of NK cells NK_Marker_Detection_Zenodo.R
Helper scripts for plotting and DEG calculation:ComputePairWiseDE_v2.R, Seurat_DE_Heatmap_RCA_Style.R
RDS files
General scRNA-seq Seurat objects:
- scRNA-seq seurat object after QC, and cell type annotation used for most analysis in the manuscript: DUKE_DataSet_Doublets_Removed_Relabeled.RDS
- scRNA-seq including findings e.g. from NK analysis used in the shiny app: DUKE_final_for_Shiny_App.rds
- Neighborhood enrichment score computed for group A across all HSPCs: Enrichment_score_global_groupA.RDS
- UMAP coordinates used in the article: Layout_2D_nNeighbours_25_Metric_cosine_TCU_removed.RDS
SCENIC files:
- Regulon set used in SCENIC: 2.6_regulons_asGeneSet.Rds
- AUC values computed for regulons: 3.4_regulonAUC.Rds
- MetaData used in SCENIC cellInfo.Rds
- Group specific regulons for LCS: groupSpecificRegulonsBCRAblP.RDS
- Patient specific regulons for LSC: patientSpecificRegulonsBCRAblP.RDS
- Patient specificity score for LSC: PatientSpecificRegulonSpecificityScoreBCRAblP.RDS
- Regulon specificty score for LSC: RegulonSpecificityScoreBCRAblP.RDS
BCR-ABL1 inference:
- HSC with inferred BCR-ABL1 label: HSCs_CML_with_BCR-Abl_label.RDS
- UMAP for HSC with inferred BCR-ABL1 label: HSCs_CML_with_BCR-Abl_label_UMAP.RDS
- HSPCs with BCR-ABL1 module scores: HSPC_metacluster_74K_with_modscore_27thmay.RDS
NK sub-clustering and filtering:
- NK object with module scores: NK_8617cells_with_modscore_1stjune.RDS
- Feature genes for NK cells computed with DubStepR: NK_Cells_DubStepR
- NK cells Seurat object excluding contaminating T and B cells: NK_cells_T_B_17_removed.RDS
- NK Seurat object including neighbourhood enrichment score calculations: NK_seurat_object_with_enrichment_labels_V2.RDS
txt and csv files:
- Proportions per cluster calculated from CyTOF: CyTOF_Proportions.txt
- Correlation between scRNAseq and CyTOF cell type abundance: scRNAseq_Cor_Cytof.txt
- Correlation between manual gating and FlowSOM clustering: Manual_vs_FlowSOM.txt
- GSEA results:
- HSPC, HSC and LSC results: FINAL_GSEA_DATA_For_GGPLOT.txt
- NK: NK_For_Plotting.txt
- TFRC and HLA expression: TFRC_and_HLA_Values.txt
- NATMI result files:
- UP-regulated_mean.csv
- DOWN-regulated_mean.csv
- Gene position file used in inferCNV: inferCNV_gene_positions_hg38.txt
- Module scores for NK subclusters per cell: NK_Supplementary_Module_Scores.csv
Compressed folders:
- All CyTOF raw data files: CyTOF_Data_raw.zip
- Results of the patient-based classifier: PatientwiseClassifier.zip
- Results of the single-cell based classifier: SingleCellClassifierResults.zip
For general new data analysis approaches, we recommend the readers to use the Seruat object stored in DUKE_final_for_Shiny_App.rds or to use the shiny app(http://scdbm.ddnetbio.com/) and perform further analysis from there.
RAW data is available at EGA upon request using Study ID: EGAS00001005509