Published July 19, 2021 | Version 1.1
Other Open

Body Part Regression Model for CT Volumes

  • 1. Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
  • 1. Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany

Description

The model can be used to estimate the examined body parts from a CT volume. 
The model was trained on several publicly available datasets. It corresponds to the Python package bpreg.
If you want to use this model, please make sure to cite the training data as well (summarized in the reference.xlsx file).

Files

public_bpr_model.zip

Files (55.6 MB)

Name Size Download all
md5:cc0ba26374932f0ca27452f4ad9bf9db
55.6 MB Preview Download

Additional details

References

  • Ke Yan, Le Lu, and Ronald M Summers. "Unsupervised body part regression via spatiallyself-ordering convolutional neural networks". In:2018 IEEE 15th International Symposiumon Biomedical Imaging (ISBI 2018). IEEE. 2018, pp. 1022–1025.
  • Amber L Simpson et al. "A large annotated medical image dataset for the development andevaluation of segmentation algorithms". In:arXiv preprint arXiv:1902.09063(2019)
  • Patrick Bilic et al. "The liver tumor segmentation benchmark (lits)". In:arXiv preprintarXiv:1901.04056(2019).
  • Marc A Attiyeh et al. "Survival prediction in pancreatic ductal adenocarcinoma by quanti-tative computed tomography image analysis". In:Annals of surgical oncology25.4 (2018),pp. 1034–1042
  • Marc A Attiyeh et al. "Preoperative risk prediction for intraductal papillary mucinous neo-plasms by quantitative CT image analysis". In:HPB21.2 (2019), pp. 212–218
  • Jayasree Chakraborty et al. "CT radiomics to predict high-risk intraductal papillary mucinousneoplasms of the pancreas". In:Medical physics45.11 (2018), pp. 5019–5029
  • Farag A Roth R, Lu L Turkbey E B, and Summers R M. Liu J.Data From Pancreas-CT[Data set]. 2016.doi:https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
  • Holger R Roth et al. "Deeporgan: Multi-level deep convolutional networks for automated pan-creas segmentation". In:International conference on medical image computing and computer-assisted intervention. Springer. 2015, pp. 556–564
  • Kenneth Clark et al. "The Cancer Imaging Archive (TCIA): maintaining and operating apublic information repository". In:Journal of digital imaging26.6 (2013), pp. 1045–1057
  • C Daniel Johnson et al. "Accuracy of CT colonography for detection of large adenomas andcancers". In:New England Journal of Medicine359.12 (2008), pp. 1207–1217
  • Bennett W Smith K Clark K et al.Data from CT-COLONOGRAPHY. 2015.doi:https://doi.org/10.7937/K9/TCIA.2015.NWTESAY1
  • Piroon Jenjaroenpun et al. "Two SARS-CoV-2 genome sequences of isolates from rural USpatients harboring the D614G mutation, obtained using Nanopore sequencing". In:Microbi-ology Resource Announcements10.1 (2021)
  • Shivang Desai et al. "Chest imaging representing a COVID-19 positive rural US population".In:Scientific data7.1 (2020), pp. 1–6
  • Baghal A Desai S et al.Data from Chest Imaging with Clinical and Genomic CorrelatesRepresenting a Rural COVID-19 Positive Population. 2020.doi:https://doi.org/10.7937/tcia.2020.py71-5978
  • Lu L Roth H et al.A new 2.5 D representation for lymph node detection in CT [Data set].2015.doi:https://doi.org/10.7937/K9/TCIA.2015.AQIIDCNM
  • Holger R Roth et al. "A new 2.5 D representation for lymph node detection using random setsof deep convolutional neural network observations". In:International conference on medicalimage computing and computer-assisted intervention. Springer. 2014, pp. 520–527
  • Ari Seff et al. "2D view aggregation for lymph node detection using a shallow hierarchy oflinear classifiers". In:International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer. 2014, pp. 544–552
  • Ari Seff et al. "Leveraging mid-level semantic boundary cues for automated lymph nodedetection". In:International Conference on Medical Image Computing and Computer-AssistedIntervention. Springer. 2015, pp. 53–61
  • Samuel G Armato III et al.Data from the LIDC-IDRI [Data set]. 2015.doi:http://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
  • Samuel G Armato III et al. "The lung image database consortium (LIDC) and image databaseresource initiative (IDRI): a completed reference database of lung nodules on CT scans". In:Medical physics38.2 (2011), pp. 915–931.
  • Elhalawani H Grossberg A et al.Cancer Center Head and Neck Quantitative Imaging WorkingGroup (HNSCC). 2020.doi:https://doi.org/10.7937/k9/tcia.2020.a8sh-7363
  • Aaron J Grossberg et al. "Imaging and clinical data archive for head and neck squamous cellcarcinoma patients treated with radiotherapy". In:Scientific data5.1 (2018), pp. 1–10
  • Hesham Elhalawani et al. "Matched computed tomography segmentation and demographicdata for oropharyngeal cancer radiomics challenges". In:Scientific data4 (2017), p. 170077.
  • Ulrich E J Beichel R R et al.Data from QIN-HEADNECK [Data set]. 2015.doi:10.7937/K9/TCIA.2015.K0F5CGLI
  • Andriy Fedorov et al. "DICOM for quantitative imaging biomarker development: a standardsbased approach to sharing clinical data and structured PET/CT analysis results in head andneck cancer research". In:PeerJ4 (2016), e2057
  • Muzi M Kinahan P, Herman B Bialecki B, and Coombs L.Data from the ACRIN 6668 TrialNSCLC-FDG-PET [Data set]. 2019.doi:https://doi.org/10.7937/tcia.2019.30ilqfcl.
  • Mitchell Machtay et al. "Prediction of survival by [18F] fluorodeoxyglucose positron emissiontomography in patients with locally advanced non–small-cell lung cancer undergoing definitivechemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial". In:Journal of clinicaloncology31.30 (2013), p. 3823