There is a newer version of the record available.

Published June 29, 2021 | Version 1.1
Dataset Open

DrugProt corpus: Biocreative VII Track 1 - Text mining drug and chemical-protein interactions

  • 1. Barcelona Supercomputing Center


Gold Standard annotations of the DrugProt corpus (training and development sets)



The aim of the DrugProt track (similar to the previous CHEMPROT task of BioCreative VI) is to promote the development and evaluation of systems that are able to automatically detect in relations between chemical compounds/drug and genes/proteins. We have therefore generated a manually annotated corpus, the DrugProt corpus, where domain experts have exhaustively labeled:(a) all chemical and gene mentions, and (b) all binary relationships between them corresponding to a specific set of biologically relevant relation types (DrugProt relation classes). There is also an increasing interested in the integration of chemical and biomedical data understood as curation of relationships between biological and chemical entities from text and storing such information in form of structured annotation databases. Such databases are of key relevance not only for biological but also for pharmacological and clinical research. A range of different types chemical-protein/gene interactions are of key relevance for biology, including metabolic relations (e.g. substrates, products) inhibition, binding or induction associations.

The DrugProt track aims to address these needs and to promote the development of systems able to extract chemical-protein interactions that might be of relevance for precision medicine as well as for drug discovery and basic biomedical research.

The DrugProt track in BioCreative VII (BC VII) will explore recognition of chemical-protein entity relations from abstracts.

Teams participating in this track are provided with:

  • PubMed abstracts
  • Manually annotated chemical compound mentions
  • Manually annotated gene/protein mentions
  • Manually annotated chemical compound-protein relations


Zip structure:

  • Training set folder with
    • drugprot_training_abstracts.tsv: PubMed records
    • drugprot_training_entities.tsv: manually labeled mention annotations of chemical compounds and genes/proteins
    • drugprot_training_relations.tsv: chemical-­protein relation annotations
  • Development set folder with
    • drugprot_development_abstracts.tsv
    • drugprot_development_entities.tsv
    • drugprot_development_relations.tsv


Data format description

The input text files for the DrugProt track will be plain-text, UTF8-encoded PubMed records in a tab-separated format with the following three columns:

  1. Article identifier (PMID, PubMed identifier)
  2. Title of the article
  3. Abstract of the article


DrugProt entity mention annotation files contain manually labeled mention annotations of chemical compounds and genes/proteins. Such files consist of tab-separated fields containing the following six columns:

  1. Article identifier (PMID)
  2. Term number (for this record)
  3. Type of entity mention (CHEMICAL, GENE-Y, GENE-N)
  4. Start character offset of the entity mention
  5. End character offset of the entity mention
  6. Text string of the entity mention

Each line contains one entity, and each entity is uniquely identified by its PMID and the Term Number. Besides, each annotation contains an annotation type, the start-offset -the index of the first character of the annotated span in the text-, the end-offset -the index of the first character after the annotated span- and the text spanned by the annotation.

Example DrugProt training entity mention annotations:

11808879	T1	GENE-Y	1860	1866	KIR6.2
11808879	T2	GENE-N	1993	2016	glutamate dehydrogenase
11808879	T3	GENE-Y	2242	2253	glucokinase
23017395	T1	CHEMICAL	216	223	HMG-CoA
23017395	T2	CHEMICAL	258	261	EPA


Example DrugProt development entity mention annotations (no distinction between GENE-Y and GENE-N):

11808879	T1	GENE	1860	1866	KIR6.2
11808879	T2	GENE	1993	2016	glutamate dehydrogenase
11808879	T3	GENE	2242	2253	glucokinase
23017395	T1	CHEMICAL	216	223	HMG-CoA
23017395	T2	CHEMICAL	258	261	EPA

DrugProt relation annotations will be distributed as a file that contains the detailed chemical-protein relation annotations prepared for the DrugProt track. It consists of tab-separated columns containing:

  1. Article identifier (PMID)
  2. DrugProt relation
  3. Interactor argument 1 (of type CHEMICAL)
  4. Interactor argument 2 (of type GENE)

Each line contains one relation, and each relation is identified by the PMID, the relation type and the two related entities. In the below example, to find the entities involved in the first relation, you must find the entities with Term Identifier T1 and T52 within the PMID 12488248.

Example DrugProt relation annotations:

12488248	INHIBITOR	Arg1:T1	Arg2:T52
12488248	INHIBITOR	Arg1:T2	Arg2:T52
23220562	ACTIVATOR	Arg1:T12	Arg2:T42
23220562	ACTIVATOR	Arg1:T12	Arg2:T43


Please, cite:

@inproceedings{krallinger2017overview, title={Overview of the BioCreative VI chemical-protein interaction Track}, author={Krallinger, Martin and Rabal, Obdulia and Akhondi, Saber A and P{\'e}rez, Mart{\i}n P{\'e}rez and Santamar{\'\i}a, Jes{\'u}s and Rodr{\'\i}guez, Gael P{\'e}rez and others}, booktitle={Proceedings of the sixth BioCreative challenge evaluation workshop}, volume={1}, pages={141--146}, year={2017}}


Summary statistics:

			Training set	Development set
Documents		3500		750
Tokens			1001168		199620
Annotated Entities	89529		18858
Annotated Relations	17288		3765


Annotated Entities:

				Training Entities	Development Entities
CHEMICAL			46274			9853
GENE-Y [Normalizable]		28421			-
GENE-N [Non-Normalizable]	14834			-
Gene Total (N+Y)		43255			9005
Total				89529			18858


Annotated Relations:

			Training Relations	Development Relations
ACTIVATOR		1429			246
INHIBITOR		5392			1152
AGONIST			659			131
ANTAGONIST		972			218
PRODUCT-OF		921			158
SUBSTRATE		2003			495
PART-OF			886			258
Total 			17288			3765


For further information, please visit or email us at and


Related resources:


DrugProt corpus is promoted by the Plan de Impulso de las Tecnologías del Lenguaje de la Agenda Digital (Plan TL).


Files (3.8 MB)

Name Size Download all
3.8 MB Preview Download