There is a newer version of the record available.

Published June 26, 2021 | Version v1
Dataset Open

Rapid evolution of thermal tolerance and phenotypic plasticity in variable environments

  • 1. University of Hamburg
  • 2. University of Exeter
  • 3. Nicholas
  • 4. Gabriel

Description

These are the data and code to go with "Rapid evolution of thermal tolerance and phenotypic plasticity in variable environments"

Figure 01 takes the following data/scripts:

20210610_Thally02_Figure01_plot_and_stats.R  with track_keeper.csv  and corr_Response growth .csv . These files contain growth rates per transfers for all selection environments throughout the experiment and growth rates in correlated environments during reciprocal transplants, respectively. 

Figure 02 takes the following data/scripts:

 

20210610_Thally02_Figure02_plot_and_stats.R  with 20161120_res_logis_t000.csv and 20161123_resloglint300.csv . These files contain the output of the shapes of the growth curves (i.e. information on lag time , growth at µmax, K etc) for all samples in all selection environments at t0 and t300, respectively

The remaining figures - position not clear at time of submission - take the following data/script. 

For plasticity in FRRF data, the script 20181204_FRRF_plasticity.R takes the FRRF raw data contained in  allfvfmdata_thally_t300_t000.csv . Extracted parameters are in files CvaluesThally02.csvpsiPSI_slope_intercept.csv, and rP_extracted_values.csv  and can be analysed using the R script extracted parameter plots.R . R script FRRF visualisation only .R  is for visualisation only, as the title suggests. 

For comparing plasticity/growth , the data are in 20170327_giantbigtable.csv , and can be visualised/analysed in plast vs growth.R 

In order to recreate the AMOVAS based on SNVs, use all_variants_fixed-only_using_5x_depth_threshold.cvs  with amova thally02.R 

For additional information, please contact elisa.schaum@uni-hamburg.de 

Files

20161120_res_logis_t000.csv

Files (13.8 MB)

Name Size Download all
md5:eccdd478725d6b06a1634f39095d354e
3.0 kB Preview Download
md5:8f90a7654e756c40e5a74035f360a172
11.5 kB Preview Download
md5:8c8f72f4406b62e1c8baec496418d170
71.7 kB Preview Download
md5:3c84614caaf9c58212171666d0071fa7
17.3 kB Download
md5:7497ca6ceff0b1f9088859287a22942a
20.3 kB Download
md5:d7604341a19ec865a5b164174c8cc415
107.6 kB Download
md5:f167d585fc597f991dbfd2b9feb08f25
11.7 MB Preview Download
md5:585f6a07b1d2be94367f58b2622e7064
1.5 MB Preview Download
md5:8f1c4608446e8169cbd13e048e1c03e1
3.3 kB Download
md5:bdf3f02f444fcb93764e88dcb4b2b348
18.1 kB Preview Download
md5:c56af3a529fff666e740152add5fcef3
2.6 kB Preview Download
md5:d886ef6b621d60ae162bc29fa3afc04c
6.5 kB Download
md5:80f1941c0e0d5bea7deb802150a5e5f7
7.0 kB Download
md5:8147e30f0e599e856e9742126cb94bfb
8.1 kB Download
md5:f5429eacf1792663b9b7c83b025bd5f8
1.7 kB Preview Download
md5:f089b6e4bef8efeb07a4a8908a09dcf6
4.0 kB Preview Download
md5:c77fe23f6fc0ee82b16804f6c64b5876
246.0 kB Preview Download