Published May 10, 2018 | Version v1
Dataset Open

Data from: Temperature-regulated guest admission and release in microporous materials

  • 1. University of Western Australia
  • 2. City University of Hong Kong
  • 3. Australian Synchrotron
  • 4. Georgia Institute of Technology
  • 5. University of Melbourne
  • 6. Monash University

Description

While it has long been known that some highly adsorbing microporous materials suddenly become inaccessible to guest molecules below certain temperatures, previous attempts to explain this phenomenon have failed. Here we show that this anomalous sorption behaviour is a temperature-regulated guest admission process, where the pore-keeping group's thermal fluctuations are influenced by interactions with guest molecules. A physical model is presented to explain the atomic-level chemistry and structure of these thermally regulated micropores, which is crucial to systematic engineering of new functional materials such as tunable molecular sieves, gated membranes and controlled-release nanocontainers. The model was validated experimentally with H2, N2, Ar and CH4 on three classes of microporous materials: trapdoor zeolites, supramolecular host calixarenes and metal-organic frameworks. We demonstrate how temperature can be exploited to achieve appreciable hydrogen and methane storage in such materials without sustained pressure. These findings also open new avenues for gas sensing and isotope separation.

Notes

Files

Files (44.8 kB)

Name Size Download all
md5:f43aa82532f6387ecc02175630352fa6
6.9 kB Download
md5:f5ef0218e08ffd0a74f6f00e387bb9f8
1.1 kB Download
md5:102e1201590d4d3d221a1d9fb6576d73
36.8 kB Download

Additional details

Related works

Is cited by
10.1038/ncomms15777 (DOI)