Published August 3, 2017 | Version v1
Dataset Open

Data from: Phylogenetic factor analysis

  • 1. University of California Los Angeles
  • 2. KU Leuven

Description

Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming to estimate the PFA posterior distribution, over three-fold faster than for multivariate diffusion and a further order-of-magnitude more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry.

Notes

Funding provided by: National Science Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000001
Award Number: DMS 1264153

Files

AquilegiaDiffusion.xml

Files (4.3 MB)

Name Size Download all
md5:ed831cf25fd4e769da24c9752d19815a
18.1 kB Preview Download
md5:cbf11a7664337a0cab18b251a4d45cf6
19.1 kB Preview Download
md5:ea561ce79970719d2edaa999929f323e
19.9 kB Preview Download
md5:bcb6ee6aab02a50e1a1d0f44725881d7
20.6 kB Preview Download
md5:1457b5a97b52fcd43308e7bf207f7096
21.6 kB Preview Download
md5:ebf9569f2cf9bab31ac4ce2a8c2f146e
20.9 kB Preview Download
md5:5b2bd39ad102999e5a86b7178f1a97ed
18.0 kB Preview Download
md5:1afd288ed5db286ecb3c309b78ef390f
21.1 kB Preview Download
md5:323a2cfeb0afb7de77025285f579db8e
40.8 kB Preview Download
md5:d12d6ebdc0d9c3354f949dcbe6d7eacf
39.4 kB Preview Download
md5:2d9dc7f9de89496f74a67d41c75fcf8a
44.3 kB Preview Download
md5:262f47e317e6b2ed57b092bd6f9c8d52
44.4 kB Preview Download
md5:ce4ef9bbd60330cc7f7ffe7fe2b8c54a
45.4 kB Preview Download
md5:7456f9db4c14302658d45871b490d1ab
44.6 kB Preview Download
md5:7a4f2888f6502783ac6d945e7ab9d5b1
45.4 kB Preview Download
md5:1bda19c1c6cc5346689d662e25b60381
45.2 kB Preview Download
md5:40347f21a6875d089a96a910587c98a5
45.5 kB Preview Download
md5:b9f80e1e23825bf52560e78204a221e3
45.6 kB Preview Download
md5:247d738eaf03746b4b05e3eec0fde86c
46.3 kB Preview Download
md5:d164a441a969d4ae0f8673b990e7dd77
2.6 MB Preview Download
md5:3fca9ffd559bfcc77064813c24eeb036
142.1 kB Preview Download
md5:a795acf34bded119f5dbaceed50c2bee
139.0 kB Preview Download
md5:595be8ebeb730bcf3c7b68993438ef2a
149.2 kB Preview Download
md5:6c05add10c06fe022a3df1db5d57624c
150.0 kB Preview Download
md5:ed3d8b76ceeaa74cdb74bfb2b84a2ac3
150.4 kB Preview Download
md5:64a97601bfe94d8020f99bb019957faf
150.9 kB Preview Download
md5:adf486d9ab68f4435edb530538e86786
151.6 kB Preview Download

Additional details

Related works

Is cited by
10.1093/sysbio/syx066 (DOI)