File uploads: We have fixed an issue which caused file uploads to fail. We apologise for the inconvenience it may have caused.

Published July 30, 2019 | Version v1
Dataset Open

Data from: Soil hydraulic properties determined by inverse modeling of drip infiltrometer experiments extended with pedotransfer functions

Description

A transient flow experiment using automated drip infiltrometers (ADIs) was performed on soil columns (about 6 dm3) large enough to incorporate macropore flow effects. We investigated to what extent the estimated soil hydraulic parameters obtained from inverse modeling of these experiments are reliable. A machine learning based pedotransfer function (PTF) for prediction of water content at −1, −10, and −158 m pressure head was developed. Sensitivity analysis of the van Genuchten parameters (residual and saturated water content r and s, fitting parameters , n, and , and saturated hydraulic conductivity Ks) in soils of sandy, silty, and clayey textures showed that the temporal variation of pressure heads in ADI scenarios was not sensitive to r and s. The other parameters were accurately estimated from numerically synthesized data. The uniqueness of the estimated parameters did not change when a bias, representing experimental error, was added to the data set. In actual columns, using the temporal and spatial pressure head data from the ADIs and the water contents in the drier range predicted by the developed PTF resulted in a precise estimation of the van Genuchten parameters. Not including the PTF water contents resulted in non-uniquely estimated van Genuchten parameters.

Notes

Funding provided by: National Science Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000001
Award Number: Fapesp and Danish Pesticide Leaching Assessment Programme

Files

Files (33.4 kB)

Name Size Download all
md5:61fe2e44c780f2bfd7f84e53c692216d
33.4 kB Download

Additional details

Related works

Is cited by
10.2136/vzj2018.12.0215 (DOI)