Published July 19, 2018 | Version v1
Dataset Open

Data from: Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama

  • 1. University of Göttingen

Description

Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly for 1 (NO) or 2 (CO2, CH4, N2O) years (2010–2012) using vented dynamic (for NO only) or static chambers with permanent bases. Across the five sites, annual fluxes ranged from 8.0 to 10.2 Mg CO2-C, −2.0 to −0.3 kg CH4-C, 0.4 to 1.3 kg N2O-N and −0.82 to −0.03 kg NO-N ha−1 yr−1. Soil CO2 emissions did not differ across sites, but they did exhibit clear seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4 sinks; within-site fluxes were largely controlled by soil moisture, whereas fluxes across sites were positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low throughout the measurement years, but the highest emissions occurred at a mid-precipitation site with high soil N availability. Net negative NO fluxes at the soil surface occurred at all sites, with the most negative fluxes at the low-precipitation site closest to Panama City; this was likely due to high ambient NO concentrations from anthropogenic sources. Our study highlights the importance of both short-term (climatic) and long-term (soil and site characteristics) factors in predicting soil trace gas fluxes.

Notes

Files

Files (67.4 kB)

Name Size Download all
md5:0e5ff64d11f74991d331034bbae4b5b5
54.1 kB Download
md5:e1d798082fd243c6c65412302ffdc4f9
13.3 kB Download

Additional details

Related works

Is cited by
10.5194/bg-14-3509-2017 (DOI)