Published June 3, 2021 | Version v6
Dataset Open

Groundwater flow rate prediction from geo-electrical features using Support Vector Machines: Bagoue dataset, Cote d'Ivoire

  • 1. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2. Equipe de Recherche Géophysique Appliquée, Laboratoire de Géologie Ressources Minérales et Energétiques, UFR des Sciences de la Terre et des Ressources Minières, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22 - Cote d'Ivoire
  • 3. Laboratoire du Génie Civil, des Géosciences et des Sciences Géographiques, Ecole Supérieure des Mines et Géologie, Institut National Polytechnique d'Houphouët Boigny,
  • 4. Key Laboratory of Geo-Detection, School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China

Contributors

  • 1. Equipe de Recherche Géophysique Appliquée, Laboratoire de Géologie Ressources Minérales et Energétiques, UFR des Sciences de la Terre et des Ressources Minières, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22 - Cote d'Ivoire
  • 2. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China

Description

We implemented a support vector machines to predict groundwater flow before drilling using electrical resistivity profiling, vertical electrical sounding. We used the data from Cote d’Ivoire, west part of Africa and we tested the composite estimator in region of Bagoue, north part of CIV. Data are composed on electrical resistivity profile, vertical electrical sounding and borehole data. The coordinates of different boreholes are also mentioned.

Files

Files (29.9 MB)

Name Size Download all
md5:249a7feb89877dc2b8100fdfc85cdea3
29.9 MB Download