GWAS to single cell: Intersecting single-cell transcriptomics and genome wide association studies identifies crucial cell-populations and candidate genes for atherosclerosis.
- 1. Central Diagnostics Laboratory, University Utrecht Medical Center
Contributors
Data manager:
- 1. Central Diagnostics Laboratory, University Utrecht Medical Center
Description
Background
Genome-wide association studies (GWAS) have discovered hundreds of common genetic variants for atherosclerotic disease and cardiovascular risk factors. The translation of susceptibility loci into biological mechanisms and targets for drug discovery remains challenging. Intersecting genetic and gene expression data has led to identification of candidate genes. However, the assayed tissues are often non-diseased and heterogeneous in cell composition confounding the candidate prioritization. We collected single-cell transcriptomics (scRNA-seq) from atherosclerotic plaques and aimed to identify cell-type-specific expression of disease-associated genes.
Methods and Results
To identify disease-associated candidate genes, we applied gene-based analyses using GWAS summary statistics from 46 atherosclerotic, cardiometabolic, and other traits. Next we intersected these candidates with single-cell transcriptomics (scRNA-seq) to identify those genes that are specifically expressed in individual cell (sub)populations of atherosclerotic plaques. We derive an enrichment score and show that loci that associated with coronary artery disease demonstrated a prominent substrate in plaque smooth muscle cells (SKI, KANK2, SORT1), endothelial cells (SLC44A1, ATP2B1), and macrophages (APOE, HNRNPUL1). Further sub clustering of SMC-subtypes revealed genes in risk loci for coronary calcification specifically enriched in a synthetic cluster of SMCs. To verify the robustness of our approach, we used liver-derived scRNAseq-data and showed enrichment of circulating lipids-associated loci in hepatocytes.
Conclusion
We confirm known gene-cell pairs relevant for atherosclerotic disease, and discovered novel pairs pointing to new biological mechanisms amenable for therapy. We present an intuitive single-cell transcriptomics driven workflow rooted in human large-scale genetic studies to identify putative candidate genes and affected cells associated with cardiovascular traits.
Notes
Files
MAGMA.zip
Additional details
Related works
- Is cited by
- Software: https://zenodo.org/badge/latestdoi/369660791 (URL)