PElib: The Polarizable Embedding library
Creators
- 1. Technical University of Denmark
- 2. University of Southern Denmark
- 3. UiT The Arctic University of Norway
Description
The PE library is an implementation of the polarizable embedding (PE) model which is a fully polarizable fragment-based quantum-classical approach, as described in the following works:
- 
Olsen, J. M. H., Aidas, K., and Kongsted, J., J. Chem. Theory Comput. 6, 2010, pp 3721–3734 (https://doi.org/10.1021/ct100380) 
- 
Olsen, J .M. H. and Kongsted, J., Adv. Quantum Chem. 61, 2011, pp 107-143 (https://doi.org/10.1016/B978-0-12-386013-2.00003-6) 
- 
Olsen, J. M. H., Ph. d. thesis (2012), Department of Physics, Chemistry and Pharmacy, University of Southern Denmark (https://doi.org/10.6084/m9.figshare.156852) 
New features in 1.2 include magnetic gradient using GIAOs as described in:
- Steinmann, C., Olsen, J. M. H., Kongsted, J., J. Chem. Theory Comput. 10, 2014, pp 981–988 (https://doi.org/10.1021/ct400880n)
New features in 1.3 include molecular gradient and effective external fields as described in:
- List, N. H., Beerepoot, M. T. P., Olsen, J. M. H., Gao, B., Ruud, K., Jensen, H. J. Aa., Kongsted, J., J. Chem. Phys. 142, 2015, pp 034119 (https://doi.org/10.1063/1.4905909)
- List, N. H., Jensen, H. J. Aa., Kongsted, J., Phys. Chem. Chem. Phys. 18, 2016, pp 10070-10080 (https://doi.org/10.1039/C6CP00669H)
New features in 1.4 include polarizable density embedding (PDE), FixSol solvation model with FIXPVA2 cavity tesselation, and support for AMOEBA potential.
- PDE is described in:
- J. M. H. Olsen, C. Steinmann, K. Ruud, and J. Kongsted, J. Phys. Chem. A 119, 2015, pp 5344-5355 (https://doi.org/10.1021/jp510138k)
- P. Reinholdt, J. Kongsted, and J. M. H. Olsen, J. Phys. Chem. Lett. 8, 2017, pp 5949-5958 (https://doi.org/10.1021/acs.jpclett.7b02788)
 
- FixSol is decribed in:
- N. M. Thellamurege and H. Li, J. Chem. Phys. 137, 2012, pp 246101 (https://doi.org/10.1063/1.4773280)
- M. S. Nørby, C. Steinmann, J. M. H. Olsen, H. Li, and J. Kongsted, J. Chem. Theory Comput. 12, 2016, pp 5050-5057 (https://doi.org/10.1021/acs.jctc.6b00706)
 
New features in 1.5 include fast multipole method (FMM).
- M. Scheurer, P. Reinholdt, J. M. H. Olsen, A. Dreuw, and J. Kongsted, J. Chem. Theory Comput. 17, 2021, pp 3445-3454 (https://doi.org/10.1021/acs.jctc.1c00225)
New features in 1.6 include new approximate environment couplings.
- P. Reinholdt, J. Kongsted, and F. Lipparini, J. Chem. Theory Comput. 18, 2021, pp 344-356 (https://doi.org/10.1021/acs.jctc.1c01037)
New features in 1.7 include London orbital contributions for PDE.
- F. K. Jørgensen, P. Reinholdt, E. D. Hedegård, and J. Kongsted, J. Chem. Theory Comput. 18, 2022, pp 7384-7393 (https://doi.org/10.1021/acs.jctc.2c00829)
New features in 1.8 include periodic boundary conditions (PBCs) when solving for induced dipoles.
- S. Kvedaraviciute, D. Carrasco-Busturia, K. B. Møller, and J. M. H. Olsen, J. Chem. Theory Comput. 19, 2023, pp 5122-5141 (https://doi.org/10.1021/acs.jctc.3c00434)
Files
      
        pelib-1.8.4.zip
        
      
    
    
      
        Files
         (202.9 kB)
        
      
    
    | Name | Size | Download all | 
|---|---|---|
| md5:766eb3936f74b80000d14fdbe774ccde | 202.9 kB | Preview Download | 
Additional details
              
                Software
              
            
          - Repository URL
- https://gitlab.com/pe-software/pelib
- Programming language
- Fortran Free Form, Fortran
- Development Status
- Active