Published March 7, 2021 | Version 2
Dataset Open

DNS of incompressible immiscible Rayleigh–Taylor instabilities

  • 1. Imperial College London

Description

Coordinates (\(y\)) of the spike, bubble and saddle point and also interface area in 2D and 3D, single–mode and multi–mode, incompressible immiscible Rayleigh–Taylor instabilities with different Atwood numbers (\(At\)), Reynolds numbers (\(Re\)) and initial perturbation amplitudes (\(A\)). This dataset is based on direct numerical simulations conducted using a phase–field approach implemented within Xcompact3d (https://www.incompact3d.com/), a high–order finite-difference computational fluid dynamics framework.

#==============================================================================================
# Please cite the following paper when publishing using this dataset:  
# Title: Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers  
# Authors: Arash Hamzehloo, Paul Bartholomew and Sylvain Laizet
# Journal: Physics of Fluids 
# DOI: https://doi.org/10.1063/5.0049867
# ==============================================================================================

Please note:

  • The 2D single-mode simulations are for a \([0,1]\times[0,4]\) domain with a \(129\times513\) grid size.
  • The 3D single-mode simulations are for a \([0,1]\times[0,4]\times[0.1]\) domain with a \(129\times513\times129\) grid size.
  • The 3D multi-mode simulations are for a \([0,\pi /2 ] \times [0,3\pi ]\times [0,\pi /2 ]\) domain on three grid sizes of \(301\times1801\times301\)\(401\times2401\times401\) and \(501\times 3001\times 501\).
  • In all files, column #1 is the time interval. If it is multiplied by 0.25 then gives: \(t^{\ast}= {t\sqrt{At}}\)
  • For the single-mode simulations, the relative coordinate (\(y^{\ast}\)) provided in the reference paper is \(y^{\ast}=y-2\)
  • For the 2D single-mode simulations, the interface is initially located at: \(y_0=2+0.1 \cos(2\pi x)\).
  • For the 3D single-mode simulations, the interface is initially located at; \(y_0=2+A \Bigg[\cos(2\pi x) + \cos(2\pi z) \Bigg]\).
  • For the 3D multi-mode simulation, the interfaces is initially located at: \(y_0=3\pi/2\) and the vertical component of the velocity vector is initialised as: \(u_2=A \beta \Bigg[ 1 + \cos(2\pi x) \Bigg]\), where \(\beta\) is a random number from -1 to 1.
  • For the 3D multi-mode simulation, the Kinetic Energy (KE) and Potential Energy (PE) are defined as \(\displaystyle KE=1/2\int_{\Omega}^{} (u_1^2+u_2^2+u_3^2) \,d \Omega\) and \(\displaystyle PE=\int_{\Omega}^{} \rho(x_1,x_2,x_3,t) x_2 \,d \Omega\), respectively. Here, \(\Omega\) denotes the computational domain volume. 

# ==============================================================================================

Details of the Xcompact3d framework and its numerical methodology can be found in the following papers:

  1. Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh. (link)

  2. A new highly scalable, high-order accurate framework for variable-density flows: Application to non-Boussinesq gravity currents. (link)

  3. High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy. (link)

 

Files

2D_Single-Mode_At0.2_Re3000_A0.05.csv

Files (8.6 kB)

Name Size Download all
md5:39b15c0312f3be9d4bd32825ccea6fec
230 Bytes Preview Download
md5:88868487e2e5367d583c0b4c3c9aac9c
230 Bytes Preview Download
md5:fd0a0216780ae2c8c2e140ab3a986cbf
230 Bytes Preview Download
md5:be7ecf7d836185ccef7c2fd563661af4
231 Bytes Preview Download
md5:7362cb14e78b1b2d9e1641bb0917bfb6
229 Bytes Preview Download
md5:abd173bef1b5a33a691d7cc4ba197975
232 Bytes Preview Download
md5:61a60bd6f5224a7dddd212f691aa3a30
230 Bytes Preview Download
md5:1be61c5946f0329cf0727f45b7715cc6
233 Bytes Preview Download
md5:53e03aa1aa55b2dfa610ee64ec6c5617
590 Bytes Preview Download
md5:ff2bd082e0fe472e80d417cd32e08476
817 Bytes Preview Download
md5:132a724d18a2d8e763eaf5969cdca716
574 Bytes Preview Download
md5:70fa8cfdbe2ed6a6509875c2b84d1dc7
368 Bytes Preview Download
md5:86078745b1bcae4cbb3ce0c4f05afe58
367 Bytes Preview Download
md5:96c68daac77fb13d42593c4a15c75f21
360 Bytes Preview Download
md5:b2cb90fecdb94fd1a39405e3540efaa1
365 Bytes Preview Download
md5:554d69f7f492a5c8c0ff7a1eafc3aba7
364 Bytes Preview Download
md5:cfd341ad507791aa1ce7357f8a724cf5
367 Bytes Preview Download
md5:a04f503a595de858189536080bf6c8bb
488 Bytes Preview Download
md5:8e201ca46bdfa3b3563717a4458c88a8
366 Bytes Preview Download
md5:942ea63296f8ff50973d9067b0e187b3
367 Bytes Preview Download
md5:5c3ed72aa6a18b169a1e2c8f2022a6c5
367 Bytes Preview Download
md5:4bead54d1c0148c0396095f4593b17f7
366 Bytes Preview Download
md5:2e2f1dae6766b8fc398df5a23953a3c6
333 Bytes Preview Download
md5:2bf83aac0f2d76c25657157c7f58c40d
336 Bytes Preview Download

Additional details

Funding

UK Turbulence Consortium EP/R029326/1
UK Research and Innovation