Published March 30, 2021 | Version v1
Dataset Open

Global lake evaporation volume (GLEV) dataset

Creators

  • 1. Carnegie Institution for Science

Description

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

For an interactive interface of the dataset (Google Earth Engine App), please see https://zeternity.users.earthengine.app/view/glev

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

There are three csv files in this dataset. Each file has 409 columns and 1427687 rows.

1. 0_evaporation_rate.csv
    The first column is Hylak_id from HydroLAKES v1.0 dataset.
    The rest 408 columns contain monthly evaporation rate (mm per day) from Jan 1985 to Dec 2018.
2. 1_openwater_area.csv
    The first column is Hylak_id.
    The rest 408 columns contain monthly open water area (square meters) from Jan 1985 to Dec 2018.
    Note that this is not the surface area of lake as shown in the above GEE App.
    It is the open water area by removing the lake ice coverage.
    The surface area dataset is available here.
3. 2_evaporation_volume.csv
    The first column is Hylak_id.
    The rest 408 columns contain monthly evaporation volume (thousand cubic meter per month) from Jan 1985 to Dec 2018.

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

To use this dataset, citation of the following paper is recommended:
Zhao, G., Li, Y., Zhou, L., Gao, H. (2022) Evaporative water loss of 1.42 million global lakes. Nature Communications. https://doi.org/10.1038/s41467-022-31125-6

The detailed algorithms associated with the development of GLEV can be found in:
Zhao, G., and H. Gao (2019), Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling approaches, Remote Sensing of Environment, 226, 109-124. https://doi.org/10.1016/j.rse.2019.03.015
Zhao, G., and H. Gao (2018), Automatic correction of contaminated images for assessment of reservoir surface area dynamics. Geophysical Research Letters, 45, 6092-6099. https://doi.org/10.1029/2018GL078343

Files

0_evaporation_rate.csv

Files (11.9 GB)

Name Size Download all
md5:1cb7cf0277094fa309af06d06266aaee
4.0 GB Preview Download
md5:3ec53c778cbe66c7f782d49dfb7032e4
4.0 GB Preview Download
md5:6301eb455089348b37ca7f2f43b93b19
3.9 GB Preview Download