Published March 14, 2021 | Version v1
Dataset Open

The numerical results for the complexity of the quantum algorithm for dynamic programming on n-dimensional lattice graph

  • 1. Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
  • 2. University of Latvia, Centre for Quantum Computer Science, Faculty of Computing
  • 3. Department of Mathematical and Computing Sciences, Tokyo Institute of Technology

Description

This is a data set for the paper "Quantum speedups for dynamic programming on n-dimensional lattice graphs", with the full version available at https://arxiv.org/abs/2104.14384.

Each file SolverDAKB.nb contains the Mathematica code to find the complexity of the quantum algorithm for D=A, K=B.

The solution for the corresponding can be read from the result of the minimization (after the line opt = NMinimize[args,{...}]). The variables from the Mathematica files correspond to the values in the paper as follows:

  • Td corresponds to Td.
  • akd corresponds to αk,d.
  • R00 corresponds to x; Rki corresponds to xk,i.

At the end of each file, a list of the differences between the constraints is given. In all results, the negative differences (which correspond to constraint violation) are negligible (e.g, 10-7) and can be eliminated by adding some small values to the point found by the minimization.

Files

Files (2.1 MB)

Name Size Download all
md5:71531138a8b590be099e2f0bf8b0d3f6
53.0 kB Download
md5:99f9a5c3493daf181f8879cee02321b5
57.4 kB Download
md5:bcb55e11c3aa99c715ae6998295a6a7d
62.4 kB Download
md5:408850730ec2459bda9c6d9427913a19
66.9 kB Download
md5:7194cbc35adeb113aa2e7267f23c0d91
73.1 kB Download
md5:61cb853cf9ce884b35a845d8688303c9
77.9 kB Download
md5:16b9c19adb6ae6b30ef66c5517dbc52d
83.7 kB Download
md5:313c0f4427ff110b3fa42dbb3698b4b4
89.4 kB Download
md5:b74b995cf98412e7574e7f2404d54538
99.4 kB Download
md5:50e5a1f200c42a1da5dcac6304c5c1ca
21.7 kB Download
md5:53b42b49a79798a22224aa1a0766608b
24.2 kB Download
md5:23ed10ca0fbda428ec43b63ed8f89986
27.8 kB Download
md5:f739e00f8b1e95c74512bcdbb3a8696e
30.6 kB Download
md5:065447a5a0bff641c9c51e18f2cb0da1
37.3 kB Download
md5:8c5f61660e7cbd6ac24b8530ce1bc7ae
23.6 kB Download
md5:c49e058c89ef3bbc88c3224b7fbc974c
26.9 kB Download
md5:3b884a99b72d35d27f78ac1256add2c0
31.9 kB Download
md5:53f58c3e02c4470f471a52ccd3fdecb5
36.4 kB Download
md5:671ddfd9edc0b7981e52d1226dd81d85
42.0 kB Download
md5:1628f8e13d3ad6240e10c19fa32f3f03
27.4 kB Download
md5:d710eda084371b82409937c5ad7291f0
34.8 kB Download
md5:13a22d091f71306ee4c3036e752a346c
42.8 kB Download
md5:3dae66e37ee7575743cf2d77bb3acace
50.8 kB Download
md5:054f1c1bf10e503c5a85a59b46df75bb
59.0 kB Download
md5:c555d56dc7e08b03bac8d773fd3f7a56
30.7 kB Download
md5:a3fc05f1b3b9ccef90d55c8adf456814
39.4 kB Download
md5:ccb39fe025151dcba7d9bbb01dbcc73a
47.4 kB Download
md5:bead54e7433ba01e1a18f3355bcde931
56.2 kB Download
md5:7ad2b10dc7d79cb53e6e0878f816afe0
64.6 kB Download
md5:3c30a709e29e54c0ce4228f030244e75
33.0 kB Download
md5:a5a53015400acc684890a4cd68fc08b7
42.5 kB Download
md5:952fca7c134b31a9801aca24a1b81d0f
53.8 kB Download
md5:cf4167afe4d0253367202dfb5db3a229
64.5 kB Download
md5:2b38e4b18254ad14500af6044df13d36
75.9 kB Download
md5:5960385970b37a34b15308028f8f29d6
37.0 kB Download
md5:b0727ab7c272581fa79e574d8f2d7efa
49.6 kB Download
md5:81ae8fe0d5727e6db7591eec58956903
61.5 kB Download
md5:1e62f15c1e47399986b11b1fc6823f75
74.8 kB Download
md5:9df7580709fc490d42b55d2e499afa24
88.4 kB Download
md5:1d0a1612a82121e0f3d0ec311d7169e5
41.0 kB Download
md5:3b44d3c66f6e985cebdc1644bed26963
45.0 kB Download
md5:e2b0bafad14dd8922d4d460e5b57c1dd
49.0 kB Download