Published March 2, 2021 | Version 0.2
Dataset Open

Reproducibility in Machine Learning and Healthcare Paper Annotation Datasets

  • 1. MIT
  • 2. Shirly
  • 3. Nikki
  • 4. Rajesh
  • 5. Luca
  • 6. Marzyeh

Description

Paper Annotations for an extended version of https://arxiv.org/abs/1907.01463

Artificial intelligence (AI) and machine learning (ML) for healthcare (ML4H)must be reproducible for reliable clinical use. We evaluate over 200 ML4Hresearch papers and find that health compares poorly to other application areas for AI and ML, particularly concerning data and code accessibility, and propose recommendations for reproducible research

Files

annotated_papers.csv

Files (465.8 kB)

Name Size Download all
md5:ab7629b5d908045c723246302607d518
184.5 kB Preview Download
md5:751f1dc6f53982e52b08ffedb85a0923
188.3 kB Preview Download
md5:8d315fabc57d67c0f91f8c45a38a99b2
2.8 kB Preview Download
md5:203a8cb6415cd7a8bfdf08963fb80f12
4.8 kB Preview Download
md5:b80e3f43f8e1e4c311260913e2594bd6
85.3 kB Preview Download