Bacterial molecular mimicry in autoimmune diseases
Description
Bacterial molecular mimicry in autoimmune diseases is one of the leading mechanisms by which microorganisms may induce autoimmunity and survive in the host. The main purpose of the current study was to determine the main microbes that elicit autoimmune reactions through molecular mimicry and identify the most relevant approaches to investigate this mechanism. A classic example is the M protein of Streptococcus pyogenes, which induces antibody cross-reactivity with a cardiac protein and causes rheumatic fever. Another notable example is the protein from Porphyromonas gingivalis that closely resembles the human heat shock protein and accelerates atherosclerotic. There is evidence that antibodies against Helicobacter pylori CagA interact with different parts of smooth muscle and endothelial cells enhancing atherosclerotic vascular disease. Recently, one cause of infertility has been associated with Staphylococcus aureus molecular mimicry that triggers an antibody response that cross-reacts with human spermatozoa proteins. Further examples of bacterial molecular mimicry are associated with Chlamydia pneumoniae, Escherichia coli, Yersinia, and Salmonella. From the literature, the most widely used methods in this field are Basic Local Alignment Search Tool (BLAST), serological assays, and phage display. The subjects of particular concern are vaccine cross-reactivity and immunosuppressive drugs side-effects, therefore alternative approaches are needed. Such an approach is phage display where therapeutic antibody fragments obtained by this technique have been used in the treatment of autoimmune diseases by neutralizing the pathological effects of autoantibodies. Phage display libraries are constructed from the antibody repertoires of autoimmune disease patients. Antibody fragments without the Fc domain can not interact with Fc receptors and proteins of the complement system and trigger autoimmune diseases. Another approach is to block the Fc receptors. In conclusion, this review highlights key aspects of bacterial molecular mimicry to better understand the factors associated with autoimmune diseases and encourage further research in this field.
Files
Palma Current Bioscience 2021 v1n1e01.pdf
Files
(395.8 kB)
Name | Size | Download all |
---|---|---|
md5:db424e6799b7574b224c9ee187210ddd
|
395.8 kB | Preview Download |
Additional details
References
- Kim B, Kaistha SD, Rouse BT. Viruses and autoimmunity. Autoimmunity [Internet]. 2006 Jan 7;39(1):71–7. Available from: http://www.tandfonline.com/doi/full/10.1080/08916930500484708. https://doi.org/10.1080/08916930500484708
- Shahrizaila N, Yuki N. Guillain-Barré Syndrome Animal Model: The First Proof of Molecular Mimicry in Human Autoimmune Disorder. J Biomed Biotechnol [Internet]. 2011;2011:1–5. Available from: http://www.hindawi.com/journals/bmri/2011/829129/. https://doi.org/10.1155/2011/829129
- Abou-Raya A, Abou-Raya S. Inflammation: A pivotal link between autoimmune diseases and atherosclerosis. Autoimmun Rev [Internet]. 2006 May;5(5):331–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1568997206000036. https://doi.org/10.1016/j.autrev.2005.12.006
- Rose* NR, Mackay IR. Molecular mimicry: a critical look at exemplary instances in human diseases. Cell Mol Life Sci [Internet]. 2000 Apr;57(4):542–51. Available from: http://link.springer.com/10.1007/PL00000716. https://doi.org/10.1007/PL00000716
- Carapetis JR, Beaton A, Cunningham MW, Guilherme L, Karthikeyan G, Mayosi BM, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Prim [Internet]. 2016 Dec 22;2(1):15084. Available from: http://www.nature.com/articles/nrdp201584. https://doi.org/10.1038/nrdp.2015.84
- Institute for Health Metrics and Evaluation. 12. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2016 (GBD 2016) Results. Seattle, United States [Internet]. 2016 [cited 2020 Mar 20]. Available from: http://ghdx.healthdata.org/gbd-results-tool
- Sfriso P, Ghirardello A, Botsios C, Tonon M, Zen M, Bassi N, et al. Infections and autoimmunity: the multifaceted relationship. J Leukoc Biol [Internet]. 2010 Mar 1;87(3):385–95. Available from: http://doi.wiley.com/10.1189/jlb.0709517. https://doi.org/10.1189/jlb.0709517
- Stollerman GH. Rheumatogenic group A streptococci and the return of rheumatic fever. Adv Intern Med [Internet]. 1990;35:1–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2405590
- Adderson EE, Shikhman AR, Ward KE, Cunningham MW. Molecular analysis of polyreactive monoclonal antibodies from rheumatic carditis: human anti-N-acetylglucosamine/anti-myosin antibody V region genes. J Immunol [Internet]. 1998 Aug 15;161(4):2020–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9712075
- Dinkla K, Nitsche-Schmitz DP, Barroso V, Reissmann S, Johansson HM, Frick I-M, et al. Identification of a Streptococcal Octapeptide Motif Involved in Acute Rheumatic Fever. J Biol Chem [Internet]. 2007 Jun;282(26):18686–93. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021925820873347. https://doi.org/10.1074/jbc.M701047200
- Galvin JE, Hemric ME, Ward K, Cunningham MW. Cytotoxic mAb from rheumatic carditis recognizes heart valves and laminin. J Clin Invest [Internet]. 2000 Jul 15;106(2):217–24. Available from: http://www.jci.org/articles/view/7132. https://doi.org/10.1172/JCI7132
- Martins TB, Hoffman JL, Augustine NH, Phansalkar AR, Fischetti VA, Zabriskie JB, et al. Comprehensive analysis of antibody responses to streptococcal and tissue antigens in patients with acute rheumatic fever. Int Immunol [Internet]. 2008 Mar 1;20(3):445–52. Available from: https://academic.oup.com/intimm/article-lookup/doi/10.1093/intimm/dxn004. https://doi.org/10.1093/intimm/dxn004
- Schenkein HA, Loos BG. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J Clin Periodontol [Internet]. 2013 Apr;40:S51–69. Available from: http://doi.wiley.com/10.1111/jcpe.12060. https://doi.org/10.1111/jcpe.12060
- Yamazaki K, Ohsawa Y, Itoh H, Ueki K, Tabeta K, Oda T, et al. T-cell clonality to Porphyromonas gingivalis and human heat shock protein 60s in patients with atherosclerosis and periodontitis. Oral Microbiol Immunol [Internet]. 2004 Jun;19(3):160–7. Available from: http://doi.wiley.com/10.1111/j.0902-0055.2004.00134.x. https://doi.org/10.1111/j.0902-0055.2004.00134.x
- Lu B, McBride BC. Stress response of Porphyromonas gingivalis. Oral Microbiol Immunol [Internet]. 1994 Jun;9(3):166–73. Available from: http://doi.wiley.com/10.1111/j.1399-302X.1994.tb00054.x. https://doi.org/10.1111/j.1399-302X.1994.tb00054.x
- Maeda H, Miyamoto M, Hongyo H, Nagai A, Kurihara H, Murayama Y. Heat shock protein 60 (GroEL) from Porphyromonas gingivalis : Molecular cloning and sequence analysis of its gene and purification of the recombinant protein. FEMS Microbiol Lett [Internet]. 1994 Jun;119(1–2):129–35. Available from: https://academic.oup.com/femsle/article-lookup/doi/10.1111/j.1574-6968.1994.tb06879.x. https://doi.org/10.1111/j.1574-6968.1994.tb06879.x
- Vayssier C, Mayrand D, Grenier D. Detection of stress proteins in Porphyromonas gingivalis and other oral bacteria by Western immunoblotting analysis. FEMS Microbiol Lett [Internet]. 1994 Sep;121(3):303–7. Available from: https://academic.oup.com/femsle/article-lookup/doi/10.1111/j.1574-6968.1994.tb07117.x. https://doi.org/10.1111/j.1574-6968.1994.tb07117.x
- Hinode D, Nakamura R, Grenier D, Mayrand D. Cross-reactivity of specific antibodies directed to heat shock proteins from periodontopathogenic bacteria of human origin. Oral Microbiol Immunol [Internet]. 1998 Feb;13(1):55–8. Available from: http://doi.wiley.com/10.1111/j.1399-302X.1998.tb00752.x. https://doi.org/10.1111/j.1399-302X.1998.tb00752.x
- Tabeta K, Yamazaki K, Hotokezaka H, Yoshie H, Hara K. Elevated humoral immune response to heat shock protein 60 (hsp60) family in periodontitis patients. Clin Exp Immunol [Internet]. 2000 May;120(2):285–93. Available from: http://doi.wiley.com/10.1046/j.1365-2249.2000.01216.x. https://doi.org/10.1046/j.1365-2249.2000.01216.x
- Briles DE, Scott G, Gray B, Crain MJ, Blaese M, Nahm M, et al. Naturally Occurring Antibodies to Phosphocholine as a Potential Index of Antibody Responsiveness to Polysaccharides. J Infect Dis [Internet]. 1987 Jun 1;155(6):1307–14. Available from: https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/155.6.1307. https://doi.org/10.1093/infdis/155.6.1307
- Scott MG, Briles DE, Shackelford PG, Smith DS, Nahm MH. Human antibodies to phosphocholine. IgG anti-PC antibodies express restricted numbers of V and C regions. J Immunol [Internet]. 1987 May 15;138(10):3325–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3571975
- Pasceri V, Cammarota G, Patti G, Cuoco L, Gasbarrini A, Grillo RL, et al. Association of Virulent Helicobacter pylori Strains With Ischemic Heart Disease. Circulation [Internet]. 1998 May 5;97(17):1675–9. Available from: https://www.ahajournals.org/doi/10.1161/01.CIR.97.17.1675. https://doi.org/10.1161/01.CIR.97.17.1675
- Franceschi F, Sepulveda AR, Gasbarrini A, Pola P, Silveri NG, Gasbarrini G, et al. Cross-Reactivity of Anti-CagA Antibodies With Vascular Wall Antigens. Circulation [Internet]. 2002 Jul 23;106(4):430–4. Available from: https://www.ahajournals.org/doi/10.1161/01.CIR.0000024100.90140.19. https://doi.org/10.1161/01.CIR.0000024100.90140.19
- Muñoz O, Tapia-Conyer R, Leal-Herrera Y, Torres J, Perez-Perez G, Gomez A, et al. Serologic IgG response to urease in Helicobacter pylori-infected persons from Mexico. Am J Trop Med Hyg [Internet]. 1999 Apr 1;60(4):587–92. Available from: https://ajtmh.org/doi/10.4269/ajtmh.1999.60.587. https://doi.org/10.4269/ajtmh.1999.60.587
- Burnie JP, Al-Dughaym A. The application of epitope mapping in the development of a new serological test for Helicobacter pylori infection. J Immunol Methods [Internet]. 1996 Jul;194(1):85–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/0022175996000713. https://doi.org/10.1016/0022-1759(96)00071-3
- Arabski M, Konieczna I, Sołowiej D, Rogoń A, Kolesińska B, Kamiński Z, et al. Are anti-Helicobacter pylori urease antibodies involved in atherosclerotic diseases? Clin Biochem [Internet]. 2010 Jan;43(1–2):115–23. Available from: https://linkinghub.elsevier.com/retrieve/pii/S000991200900410X. https://doi.org/10.1016/j.clinbiochem.2009.09.016
- Matusiak A, Chałubiński M, Broncel M, Rechciński T, Rudnicka K, Miszczyk E, et al. Putative consequences of exposure to Helicobacter pylori infection in patients with coronary heart disease in terms of humoral immune response and inflammation. Arch Med Sci [Internet]. 2016;1:45–54. Available from: http://www.termedia.pl/doi/10.5114/aoms.2015.50772. https://doi.org/10.5114/aoms.2015.50772
- Sutton P. Helicobacter pylori vaccines spiral into the new millennium. Dig Liver Dis [Internet]. 2003 Oct;35(10):675–87. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1590865803004146. https://doi.org/10.1016/S1590-8658(03)00414-6
- Alm RA, Bina J, Andrews BM, Doig P, Hancock REW, Trust TJ. Comparative Genomics of Helicobacter pylori: Analysis of the Outer Membrane Protein Families. O'Brien AD, editor. Infect Immun [Internet]. 2000 Jul 1;68(7):4155–68. Available from: https://iai.asm.org/content/68/7/4155. https://doi.org/10.1128/IAI.68.7.4155-4168.2000
- Grayston JT, Aldous MB, Easton A, Wang S -p., Kuo C -c., Campbell LA, et al. Evidence that Chlamydia pneumoniae Causes Pneumonia and Bronchitis. J Infect Dis [Internet]. 1993 Nov 1;168(5):1231–5. Available from: https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/168.5.1231. https://doi.org/10.1093/infdis/168.5.1231
- Saikku P, Mattila K, Nieminen M., Huttunen J., Leinonen M, Ekman M-R, et al. Serological evidence of an association of a novel chlamydia, twar, with chronic coronary heart disease and acute myocardial infarction. Lancet [Internet]. 1988 Oct;332(8618):983–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673688907416. https://doi.org/10.1016/S0140-6736(88)90741-6
- Nikkari S, McLaughlin IJ, Bi W, Dodge DE, Relman DA. Does Blood of Healthy Subjects Contain Bacterial Ribosomal DNA? J Clin Microbiol [Internet]. 2001 May 1;39(5):1956–9. Available from: http://jcm.asm.org/cgi/doi/10.1128/JCM.39.5.1956-1959.2001. https://doi.org/10.1128/JCM.39.5.1956-1959.2001
- Meng Q, Ren A, Zhang L, Liu J, Li Z, Yang Y, et al. Incidence of infertility and risk factors of impaired fecundity among newly married couples in a Chinese population. Reprod Biomed Online [Internet]. 2015 Jan;30(1):92–100. Available from: https://linkinghub.elsevier.com/retrieve/pii/S147264831400546X. https://doi.org/10.1016/j.rbmo.2014.10.002
- Krause W, Naz RK. Immune infertility : impact of immune reactions on human fertility. Second edi. Walter K.H. Krause, Rajesh K. Naz E, editor. Switzerland : Springer; 2017. 302 p.
- Ayvaliotis B, Bronson R, Rosenfeld D, Cooper G. Conception rates in couples where autoimmunity to sperm is detected. Fertil Steril [Internet]. 1985 May;43(5):739–42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0015028216485572. https://doi.org/10.1016/S0015-0282(16)48557-2
- Collins JA, Burrows EA, Yeo J, YoungLai EV. Frequency and predictive value of antisperm antibodies among infertile couples. Hum Reprod [Internet]. 1993 Apr;8(4):592–8. Available from: https://academic.oup.com/humrep/article/642051/Frequency. https://doi.org/10.1093/oxfordjournals.humrep.a138102
- Thaper D, Prabha V. Molecular mimicry: An explanation for autoimmune diseases and infertility. Scand J Immunol [Internet]. 2018 Aug;88(2):e12697. Available from: http://doi.wiley.com/10.1111/sji.12697. https://doi.org/10.1111/sji.12697
- Ana M, Utomo DH, Widjajanto E, Aulaniám S, Wiyasa IWA. Molecular Modeling for Revealing Cross-Reaction Antibody with Staphylococcus Aureus and Human Spermatozoa Protein. Int J ChemTech Res. 2016;9(1):233–9.
- Thaper D, Rahi DK, Prabha V. Amelioration of sperm immobilisation factor-induced infertility by bacterial antigenic determinants cross-reacting with spermatozoa. Reprod Fertil Dev [Internet]. 2019;31(3):602. Available from: http://www.publish.csiro.au/?paper=RD18300. https://doi.org/10.1071/RD18300
- Blount ZD. The unexhausted potential of E. coli. Elife [Internet]. 2015 Mar 25;4. Available from: https://elifesciences.org/articles/05826. https://doi.org/10.7554/eLife.05826
- Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med [Internet]. 1995 May 1;181(5):1835–45. Available from: https://rupress.org/jem/article/181/5/1835/25325/HLA-DRB4-0101restricted-immunodominant-T-cell. https://doi.org/10.1084/jem.181.5.1835
- Abraham SN, Sun D, Dale JB, Beachey EH. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature [Internet]. 1988 Dec;336(6200):682–4. Available from: http://www.nature.com/articles/336682a0. https://doi.org/10.1038/336682a0
- Roudier J, Petersen J, Rhodes GH, Luka J, Carson DA. Susceptibility to rheumatoid arthritis maps to a T-cell epitope shared by the HLA-Dw4 DR beta-1 chain and the Epstein-Barr virus glycoprotein gp110. Proc Natl Acad Sci [Internet]. 1989 Jul 1;86(13):5104–8. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.86.13.5104. https://doi.org/10.1073/pnas.86.13.5104
- Albani S, Tuckwell JE, Esparza L, Carson DA, Roudier J. The susceptibility sequence to rheumatoid arthritis is a cross-reactive B cell epitope shared by the Escherichia coli heat shock protein dnaJ and the histocompatibility leukocyte antigen DRB10401 molecule. J Clin Invest [Internet]. 1992 Jan 1;89(1):327–31. Available from: http://www.jci.org/articles/view/115580. https://doi.org/10.1172/JCI115580
- Wang Z, Zhang Q, Lu J, Jiang F, Zhang H, Gao L, et al. Identification of Outer Membrane Porin F Protein of Yersinia enterocolitica Recognized by Antithyrotopin Receptor Antibodies in Graves' Disease and Determination of Its Epitope Using Mass Spectrometry and Bioinformatics Tools. J Clin Endocrinol Metab [Internet]. 2010 Aug 1;95(8):4012–20. Available from: https://academic.oup.com/jcem/article/95/8/4012/2597477. https://doi.org/10.1210/jc.2009-2184
- Benvenga S, Guarneri F, Vaccaro M, Santarpia L, Trimarchi F. Homologies Between Proteins of Borrelia burgdorferi and Thyroid Autoantigens. Thyroid [Internet]. 2004 Nov;14(11):964–6. Available from: https://www.liebertpub.com/doi/10.1089/thy.2004.14.964. https://doi.org/10.1089/thy.2004.14.964
- Stebbins CE, Galán JE. Structural mimicry in bacterial virulence. Nature [Internet]. 2001 Aug;412(6848):701–5. Available from: http://www.nature.com/articles/35089000. https://doi.org/10.1038/35089000
- Hughes RA., Hadden RD., Gregson N., Smith K. Pathogenesis of Guillain–Barré syndrome. J Neuroimmunol [Internet]. 1999 Dec;100(1–2):74–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165572899001952. https://doi.org/10.1016/S0165-5728(99)00195-2
- Kuwabara S. Guillain-Barré syndrome. Curr Neurol Neurosci Rep [Internet]. 2007 Jan 16;7(1):57–62. Available from: http://link.springer.com/10.1007/s11910-007-0022-6. https://doi.org/10.1007/s11910-007-0022-6
- Metcalf ES, Soloski MJ. Salmonella as an Inducer of Autoimmunity. EcoSal Plus [Internet]. 2007 Apr 19;2(2). Available from: http://www.asmscience.org/content/journal/ecosalplus/10.1128/ecosalplus.8.8.13. https://doi.org/10.1128/ecosalplus.8.8.13
- Ktsoyan Z, Budaghyan L, Agababova M, Mnatsakanyan A, Arakelova K, Gevorgyan Z, et al. Potential Involvement of Salmonella Infection in Autoimmunity. Pathogens [Internet]. 2019 Jul 3;8(3):96. Available from: https://www.mdpi.com/2076-0817/8/3/96. https://doi.org/10.3390/pathogens8030096
- Miller AL, Pasternak JA, Medeiros NJ, Nicastro LK, Tursi SA, Hansen EG, et al. In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. Typhimurium infection. Knodler L, editor. PLOS Pathog [Internet]. 2020 Jul 9;16(7):e1008591. Available from: https://dx.plos.org/10.1371/journal.ppat.1008591. https://doi.org/10.1371/journal.ppat.1008591
- Riley WJ, Maclaren NK, Krischer J, Spillar RP, Silverstein JH, Schatz DA, et al. A Prospective Study of the Development of Diabetes in Relatives of Patients with Insulin-Dependent Diabetes. N Engl J Med [Internet]. 1990 Oct 25;323(17):1167–72. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM199010253231704. https://doi.org/10.1056/NEJM199010253231704
- Bonifacio E, Shattock M, Dean BM, Bottazzo GF, Bingley PM, Gale EAM, et al. Quantification of islet-cell antibodies and prediction of insulin-dependent diabetes. Lancet [Internet]. 1990 Jan 20;335(8682):147–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/014067369090013U. https://doi.org/10.1016/0140-6736(90)90013-U
- Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today [Internet]. 1993 Sep;14(9):426–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/016756999390244F. https://doi.org/10.1016/0167-5699(93)90244-F
- Smith G. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science (80- ) [Internet]. 1985 Jun 14;228(4705):1315–7. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.4001944. https://doi.org/10.1126/science.4001944
- Adachi JA, D'Alessio FR, Ericsson DC. Reactive Arthritis Associated with Typhoid Vaccination in Travelers: Report of Two Cases with Negative HLA-B27. J Travel Med [Internet]. 2006 Mar 8;7(1):35–6. Available from: https://academic.oup.com/jtm/article-lookup/doi/10.2310/7060.2000.00010. https://doi.org/10.2310/7060.2000.00010
- Wang G, Ujiie H, Shibaki A, Nishie W, Tateishi Y, Kikuchi K, et al. Blockade of Autoantibody-Initiated Tissue Damage by Using Recombinant Fab Antibody Fragments against Pathogenic Autoantigen. Am J Pathol [Internet]. 2010 Feb;176(2):914–25. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002944010604038. https://doi.org/10.2353/ajpath.2010.090744
- Bril V, Benatar M, Andersen H, Vissing J, Brock M, Greve B, et al. Efficacy and safety of rozanolixizumab in moderate-to-severe generalised myasthenia gravis. Neurology [Internet]. 2020 Nov 20;10.1212/WNL.0000000000011108. Available from: http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000011108. https://doi.org/10.1212/WNL.0000000000011108
- Seijsing J, Yu S, Frejd FY, Höiden-Guthenberg I, Gräslund T. In vivo depletion of serum IgG by an affibody molecule binding the neonatal Fc receptor. Sci Rep [Internet]. 2018 Dec 23;8(1):5141. Available from: http://www.nature.com/articles/s41598-018-23481-5. https://doi.org/10.1038/s41598-018-23481-5