Published January 31, 2021 | Version v1
Journal article Open

mRNA Based SARS-CoV-2 Vaccines and Ongoing Researches

  • 1. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey
  • 2. Department of Medical Microbiology, Gulhane Institute Of Health Sciences, University of Health Sciences, Ankara, Turkey

Description

Özet

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) insanları ve bir dizi hayvan türünü enfekte eden ve insanlarda COVID-19 (coronavirus disease 2019) olarak adlandırılan hastalığa neden olan, yüksek bulaştırıcılık hızı ile ciddi bir sağlık krizi ve küresel pandemiye neden olan bir RNA virüsüdür. Tüm dünyada sosyoekonomik hayat üzerine yıkıcı etkilere neden olan SARS-CoV-2 pandemisinin kontrol altına alınmasında standart halk sağlığı önlemlerinin etkileri dönemsel ve bölgesel düzeyde sınırlı kalmış ve bu büyük krizi kontrol altına almada aşılara atfedilen önem en üst düzeye çıkmıştır. Geçmişte bir benzeri ile Zika virus salgınında karşılaşılmış olmasına rağmen, SARS-CoV-2 pandemisinde aşı çalışmaları tarihte eşi görülmemiş bir hıza ve kapsama ulaşmıştır. Son bir yıl içerisinde başlayan aşı çalışmaları arasında Dünya Sağlık Örgütü (DSÖ) tarafından izlenen aşı adaylarının sayısı 236’ya ulaşırken bunların 63’ü klinik çalışma aşamalarına ulaşmıştır. Bunlar içerisinde 30’a yakın mRNA aşı adayından ise 7’si klinik çalışma aşamalarına ulaşmış ve 2020 Aralık itibariyle yeni geliştirilen birkaç mRNA aşısı “acil kullanım onayları” ile milyonlarca kişiye uygulanmıştır. SARS-CoV ve MERS-CoV (Middle East respiratory syndrome coronavirus) üzerinde yapılan çalışmalar virüsün hücreye girişinde kritik önemi olan ve çok sayıda nötralizan epitop barındıran S proteininin aşı tasarımı için çekici bir hedef olduğunu ortaya koymuştur. Günümüzde de, S proteinini veya bu proteinin alt birimlerini kodlayan mRNA temelli aşılar kromozoma entegre olma veya enfeksiyon riski taşımamaları, düşük doz aşılama ile yüksek düzeyde antikor yanıtını uyarmaları, hızlı tasarım ve ölçeklenebilir üretim avantajları ile küresel aşılama programlarının baskın aşı platformları olmuştur. Türkiye’de ise bir mRNA aşı adayının preklinik çalışmaları devam ederken, farklı bir mRNA aşısının (BNT162b2) faz III çalışmalarına Türkiye’den birçok merkez dahil olmuştur. SARS-CoV-2 salgının başlangıcından itibaren izlenen yeni mutasyonlar mRNA aşılarının etkinliği ile ilgili endişelere neden olurken, yakın zamanda yapılan analizler ve laboratuvar çalışmaları (nötralizasyon testleri) yeni varyantların henüz aşı etkinliği üzerinde ciddi bir etkileri olmadığını göstermektedir. Yıkıcı etkileri olan küresel bir salgına hızlı müdahale amacıyla, klinik çalışmaları hızlı bir şekilde tamamlanan ve uzun dönem olası yan etkileri ile ilgili verilerin bulunmadığı bu aşılar için önümüzdeki süreçte güvenlik ve etkinlik ile ilgili daha detaylı verilere ulaşılacağı beklenmektedir.

Abstract

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) is an RNA virus that infects humans and a number of animal species and causes the disease called COVID-19 (coronavirus disease 2019) in humans, causing a severe health crisis and global pandemic with its high rate of transmission. In controlling the SARS-CoV-2 pandemic, which has devastating effects on socioeconomic life all over the world, the effects of standard public health measures have remained limited at periodic and regional levels, and the importance attributed to vaccines in controlling that great crisis has reached the highest level. Although a similar situation has been encountered in the Zika virus outbreak in the past, vaccination studies in the SARS-CoV-2 pandemic have reached an unprecedented speed and scope in history. Among the vaccine studies that started in the last year, the number of vaccine candidates monitored by the World Health Organization (WHO) have reached 236 and 63 of them have reached the clinical study stages. Among these, nearly 30 are mRNA vaccines and 7 of them have reached clinical study stages and as of December 2020, and several newly developed mRNA vaccines have been applied to millions of people with "emergency use authorization". Studies conducted on SARS-CoV and MERS-CoV (Middle East respiratory syndrome coronavirus) have revealed that the S protein, which has a critical importance in the entry of the virus into the cell and contains a large number of neutralizing epitopes, is an attractive target for vaccine design. Today, mRNA-based vaccines encoding the S protein or its subunits have become the dominant vaccine platforms of global vaccination programs, with the advantage of not having the potential risk of infection or being integrated to into the chromosome, stimulating a high level of antibody response with low dose vaccination, rapid design and scalable production. While the preclinical studies of an mRNA vaccine candidate are continuing in Turkey, many centers from Turkey have been involved in the phase III trials of a different mRNA vaccine (BNT162b2). New mutations monitored since the beginning of the SARS-CoV-2 outbreak raise concerns about the effectiveness of mRNA vaccines, recent analyzes and laboratory studies (neutralization tests) show that the new variants do not yet have a serious impact on vaccine efficacy. It is expected that more detailed data about safety and efficacy will be available in the upcoming period for these vaccines, for which clinical studies have been completed quickly and there are no data on long-term possible side effects in order to respond rapidly to a global epidemic with devastating effects.

Notes

mRNA Temelli SARS-CoV-2 Aşıları ve Devam Eden Çalışmalar

Files

jmvi.2020.21.pdf

Files (532.9 kB)

Name Size Download all
md5:fb430d4485cdb1c020b60ae9847e4295
532.9 kB Preview Download

Additional details

References

  • 1. Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev 2020; 170: 1-25.
  • 2. Henderson DA. The eradication of smallpox--an overview of the past, present, and future. Vaccine 2011; 29 Suppl 4: D7-9.
  • 3. Tumban E. Lead SARS-CoV-2 Candidate Vaccines: Expectations from Phase III Trials and Recommendations Post-Vaccine Approval. Viruses 2020; 13(1): E54.
  • 4. Sarı O, Hoşbul T, Şahiner F. Basic Epidemiological Parameters at the end of the 5th month of the COVID-19 Outbreak. J Mol Virol Immunol 2020; 1(1): 67-80.
  • 5. World Health Organization (WHO), Geneva, Switzerland. Draft landscape of COVID-19 candidate vaccines. Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines [Accessed January 28, 2021].
  • 6. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
  • 7. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al.; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 2020; [Epub ahead of print].
  • 8. Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today 2019; 28: 100766.
  • 9. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Pfizer COVID-19 Vaccine EUA Letter of Authorization. Available at: https://www.fda.gov/media/144412/download [Accessed December 29, 2020].
  • 10. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Moderna COVID-19 Vaccine EUA Letter of Authorization. Available at: https://www.fda.gov/media/144636/download [Accessed December 29, 2020].
  • 11. Mahase E. Covid-19: UK approves Pfizer and BioNTech vaccine with rollout due to start next week. BMJ 2020; 371: m4714.
  • 12. European Medicines Agency (EMA), Amsterdam, Netherlands. EMA recommends first COVID-19 vaccine for authorisation in the EU. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty [Accessed December 29, 2020].
  • 13. Park KS, Sun X, Aikins ME, Moon JJ. Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev 2021; 169: 137-51.
  • 14. Dutta NK, Mazumdar K, Gordy JT. The Nucleocapsid Protein of SARS-CoV-2: a Target for Vaccine Development. J Virol 2020; 94(13): e00647-20.
  • 15. He Y, Li J, Heck S, Lustigman S, Jiang S. Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design. J Virol 2006; 80(12): 5757-67.
  • 16. Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2020: 1-10. [Epub ahead of print]
  • 17. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020. pii: S0092- 8674(20)30338-X.
  • 18. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
  • 19. Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. Emerging SARS-CoV-2 Variants. Available at: https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/scientific-brief-emerging-variants.html [Accessed January 29, 2021].
  • 20. International Committee on Taxonomy of Viruses, Washington, DC. ICTV reports; Coronaviridae. Available at: https://talk.ictvonline.org/ictvreports/ictv_9th_report/positive-sense-rna-viruses2011/w/posrna_viruses/222/coronaviridae [Accessed March 30, 2020]
  • 21. Widge AT, Rouphael NG, Jackson LA, Anderson EJ, Roberts PC, Makhene M, et al; mRNA-1273 Study Group. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N Engl J Med 2021; 384(1): 80-2.
  • 22. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al.; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 2020; 383(27): 2603-15.
  • 23. Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M, et al. BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans. medRxiv 2020.12.09.20245175.
  • 24. Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 2020; 383(25): 2439-50.
  • 25. Ledford H. US authorization of first COVID vaccine marks new phase in safety monitoring. Nature 2020; 588(7838): 377-8.
  • 26. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Vaccines and Related Biological Products Advisory Committee December 17, 2020 Meeting Presentation - FDA Review of Efficacy and Safety of Moderna COVID-19 Vaccine Emergency Use Authorization Request. Available at: https://www.fda.gov/media/144585/download [Accessed December 29, 2020].
  • 27. US Food and Drug Administration (FDA), Silver Spring, Maryland, USA. Vaccines and Related Biological Products Advisory Committee Meeting December 10, 2020 FDA Briefing Document Pfizer-BioNTech COVID-19 Vaccine. Available at: https://www.fda.gov/media/144245/download [Accessed December 29, 2020].
  • 28. National Institutes of Health (NIH), New York, USA. National Library of Medicine (NLM); ClinicalTrials.gov. Available at: https://www.clinicaltrials.gov/ [Accessed December 23, 2020].
  • 29. Rauch S, Gooch K, Hall Y, Salguero FJ, Dennis MJ, Gleeson FV, et al. mRNA vaccine CVnCoV protects non-human primates from SARS-CoV-2 challenge infection. bioRxiv 2020.12.23.424138.
  • 30. Amraiz D, Fatima M, Navid MT. SARS-CoV-2 Leading Vaccine Candidates: Progress and Development. Life and Science 2020; 1(suppl): 38-44.
  • 31. Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 2020; 18(1): 179.
  • 32. Callaway E. The coronavirus is mutating - does it matter? Nature 2020; 585(7824): 174-7.
  • 33. Conti P, Caraffa A, Gallenga CE, Kritas SK, Frydas I, Younes A, et al. The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem. J Biol Regul Homeost Agents 2021; 35(1). [Epub ahead of print]
  • 34. Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R, et al. D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host Microbe 2021; 29(1): 23-31.e4.
  • 35. Rambaut A, Loman N, Pybus O, Barclay W, Barrett J, Carabelli A, et al. COVID-19 Genomics Consortium UK (CoG-UK), Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. virological.org 2020.
  • 36. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv 2020.12.21.20248640.
  • 37. Naveca F, da Costa C, Nascimento V, Souza V, Corado A, Nascimento Á, et al. SARS-CoV-2 reinfection by the new Variant of Concern (VOC) P.1 in Amazonas, Brazil. virological.org 2021.
  • 38. BioNTech SE, Mainz, Rhineland-Palatinate, Germany. In Vitro Studies Demonstrate Pfizer and BioNTech COVID-19 Vaccine Elicits Antibodies that Neutralize SARS-CoV-2 with Key Mutations Present in U.K. and South African Variants Available at: https://investors.biontech.de/news-releases/news-release-details/vitro-studies-demonstrate-pfizer-and-biontech-covid-19-vaccine/ [Accessed January 29, 2021].
  • 39. Moderna, Massachusetts, ABD. COVID-19 Vaccine Retains Neutralizing Activity Against Emerging Variants First Identified in the U.K. and the Republic of South Africa. Available at: https://investors.modernatx.com/node/10841/pdf [Accessed January 25, 2021]