Published January 1, 2020 | Version v2
Journal article Open

Hepatitis C Virus: Genetic Characteristics, Advances and Current Challenges for Vaccine Development

  • 1. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Turkey
  • 2. Department of Internal Medicine, Gulhane Training and Research Hospital, Ankara, Turkey

Description

Özet

Hepatit C virusu (HCV) yüksek replikasyon oranı, genetik heterojenitesi (antijenik çeşitliliği), hücreden hücreye doğrudan geçebilmesi ve lipoviropartiküler maskeleme gibi özellikleri ile immün yanıttan kaçabilmekte ve yüksek kronikleşme riski taşımaktadır. Günümüzde başarı oranları %95’leri bulan yeni nesil tedavi stratejileri ile HCV’nin eradike edilebileceği düşünülmeye başlanmıştır. Bununla beraber, enfekte olduğunun farkında olmayan veya riskli davranışlar sergileyen kişilerle enfeksiyon yayılmaya devam etmektedir. Ayrıca, tedavinin HCV ilişkili sekelleri tam olarak ortadan kaldıramaması ve enfekte kişilerin sadece %10’unun tedaviye erişebilir olması gibi faktörler tedavi stratejilerinin virusun yayılımını önlemede tek başına yeterli olamayacağını göstermektedir. HCV’nin keşfinden günümüze 20 yıl gibi uzun bir süre geçmesine rağmen hala koruyucu bir aşı geliştirilmesinin önünde önemli engeller bulunmaktadır. Bunlar arasında virusun yapısal ve genetik özellikleri (yüksek antijenik heterojenitesi), zarf glikoproteinlerinin yoğun posttranslasyonel modifikasyonlara uğraması, yakın zamana kadar uygun bir hücre kültürü sisteminin geliştirilememesi, immünkompetan küçük hayvan modellerinin eksikliği, aşı etkinliğinin değerlendirilmesi için deneysel modellerin ve klinik çalışmaların planlanmasındaki zorluklar, başarılı tedavi ile virusun eradike edilebileceği şeklindeki iyimser görüş, bazı teknik güçlükler ve mali destek kısıtlılığı gibi nedenler öne çıkmaktadır. Tüm bu zorluklara rağmen, dünya genelinde HCV enfeksiyonları ile ilişkili mortalite ve morbiditeyi azaltmak için en uygun maliyetli strateji olan etkili bir koruyucu aşı geliştirilmesinde umut vadeden ilerlemeler de olmuştur. İmmün yanıt ile enfekte bireylerin bir bölümünde akut HCV enfeksiyonlarının temizlenebilmesi, yeni hücre kültürü sistemleri ve küçük hayvan modelleri, şempanzelerle yapılan aşı çalışmalarında alınan başarılı sonuçlar, bazı aşıların klinik deneme aşamalarına gelmiş olması, aşı teknolojisi ve stratejilerindeki ilerlemelerin sunduğu yeni fırsatlar bunlardan bazılarıdır. Bu derlemede geliştirilebilecek bir koruyucu aşının HCV enfeksiyonlarının yayılımını önlemedeki öneminin vurgulanması amaçlanmıştır. Ayrıca aşı geliştirme çalışmalarındaki güncel durum, karşılaşılan engeller ve bu engelleri aşmak için başvurulan alternatif stratejilere değinilmiştir.

Abstract

Hepatitis C virus (HCV) can escape immune response and has a high risk of chronicity due to its high replication rate, genetic heterogeneity (antigenic diversity), direct cell-to-cell transmission and lipoviroparticular masking. Nowadays, it is thought that HCV can be eradicated with new generation treatment strategies with success rate of 95%. However, the infection continues to spread via patients who are unaware of their illness or exhibit risky behaviors. In addition, treatment cannot completely eliminate HCV-related sequelae and only 10% of infected people have access to treatment. These realities show that treatment strategies alone will not be sufficient to prevent the spread of the virus. Although 20 years have passed since the discovery of HCV, there are still significant obstacles to the development of a protective vaccine. The leading challenges include; structural and genetic characteristics of the virus (high antigenic heterogeneity), the highly posttranslational modification of envelope glycoproteins, the inability to develop a suitable cell culture system until recently, the lack of immunocompetent small animal models, the difficulties in planning experimental models and clinical trials for the evaluation of vaccine efficacy, optimistic view that successful treatment can eradicate the virus, some technical difficulties and limited financial support. Despite all these limitations, there have also been promising improvements in the development of an effective preventive vaccine, which is the most cost-effective strategy to reduce mortality and morbidity associated with HCV infections worldwide. Some of these include; clearance of acute HCV infections in some of the infected individuals with immune response, new cell culture systems and small animal models, successful results in vaccine studies with chimpanzees, some vaccines have come to clinical trial stages, new opportunities offered by advances in vaccine technology and strategies. In this review article, it is aimed to emphasize the importance of a protective vaccine could be developed to prevent the spread of HCV infections. In addition, the current situation in vaccine development studies, the obstacles encountered and alternative strategies to overcome these obstacles are mentioned.

Notes

Hepatit C Virusu: Genetik Özellikleri, Aşı Geliştirme Çalışmalarında İlerlemeler ve Güncel Zorluklar

Files

jmvi.2020.1.pdf

Files (438.3 kB)

Name Size Download all
md5:d7e632217733ad6782a4e0df3fa16c60
438.3 kB Preview Download

Additional details

References

  • 1. Zingaretti C, De Francesco R, Abrignani S. Why is it so difficult to develop a hepatitis C virus preventive vaccine? Clin Microbiol Infect 2014; 20 (Suppl 5): 103-9.
  • 2. Wilkins T, Akhtar M, Gititu E, Jalluri C, Ramirez J. Diagnosis and Management of Hepatitis C. Am Fam Physician 2015; 91(12): 835-42.
  • 3. Ergünay K, Abacıoğlu H. Hepatit C Virusunun Genomik Varyasyonları ve Kliniğe Etkileri. Mikrobiyol Bul 2015; 49(4): 625-35.
  • 4. Cebeci İ, Tanoglu A, Şahiner F, Özel M, Öncü K, Yazgan Y, et al. Kronik hepatit C hastalarında antiviral tedaviye yanıtta etkili olabilecek parametrelerin değerlendirilmesi. Gülhane Tıp Derg 2015; 57: 373-7.
  • 5. Scheel TK, Rice CM. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 2013; 19(7): 837-49.
  • 6. Zoulim F, Liang TJ, Gerbes AL, Aghemo A, Deuffic-Burban S, Dusheiko G6, et al. Hepatitis C virus treatment in the real world: optimising treatment and access to therapies. Gut 2015; 64(11): 1824-33.
  • 7. Bailey JR, Barnes E, Cox AL. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019; 156(2): 418-30.
  • 8. Bartenschlager R, Baumert TF, Bukh J, Houghton M, Lemon SM, Lindenbach BD, et al. Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies. Virus Res 2018; 248: 53-62.
  • 9. Franco RA, Galbraith JW, Overton ET, Saag MS. Direct-acting antivirals and chronic hepatitis C: towards elimination. Hepatoma Res 2018; 4: 74.
  • 10. Shoukry NH. Hepatitis C vaccines, Antibodies, and T Cells. Front Immunol 2018; 9: 1480.
  • 11. WHO. Global health sector strategies on viral hepatitis 2016-2021. Available from: https://www.who.int/hepatitis/strategy2016-2021/ghss-hep/en/. [Accessed November 28, 2018].
  • 12. Lanini S, Easterbrook PJ, Zumla A, Ippolito G. Hepatitis C: global epidemiology and strategies for control. Clin Microbiol Infect 2016; 22(10): 833-8.
  • 13. Hill AM, Nath S, Simmons B. The road to elimination of hepatitis C: analysis of cures versus new infections in 91 countries. J Virus Erad 2017; 3: 117-23.
  • 14. Sorbo MC, Cento V, Di Maio VC, Howe AYM, Garcia F, Perno CF, et al. Corrigendum to "Hepatitis C virus drug resistance associated substitutions and their clinical relevance: Update. 2018 Drug Resist Updat 2018; 40:40-1.
  • 15. Kanwal F, Kramer JR, Asch SM, Cao Y, Li L, El-Serag HB. Long-term risk of hepatocellular carcinoma in HCV patients treated with direct acting antiviral agents. Hepatology 2019. [Epub ahead of print]
  • 16. International Committee on Taxonomy of Viruses, Washington, DC. Virus Taxonomy: 2018b, July 2018. Available at: https://talk.ictvonline.org/taxonomy/ [Accessed July 26, 2019].
  • 17. International Committee on Taxonomy of Viruses, Washington, DC. ICTV reports; Genus: Hepacivirus. Available at: https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/flaviviridae/362/genus-hepacivirus [Accessed August 23, 2019].
  • 18. Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, et al. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 2015; 61(1): 77-87.
  • 19. Huber MK, Sarrazin U, Zeuzem S. Hepatitis C Virus (Chapter 10). In: Viral Infections and Treatment (Eds.: Rübsamen-Waigmann H, Deres K, Hewlett G, Welker R) Marcel Dekker Inc., 2003, New York. pp.295-367.
  • 20. Kabakçı Alagöz G, Karataylı SC, Karataylı E, Celik E, Keskin O, et al. Hepatitis C virus genotype distribution in Turkey remains unchanged after a decade: performance of phylogenetic analysis of the NS5B, E1, and 5'UTR regions in genotyping efficiency. Turk J Gastroenterol 2014; 25(4): 405-10.
  • 21. Ghany MG, Liang TJ. Natural History of Chronic Hepatitis C. In: Hepatitis C Virus II: Infection and Disease (Eds.: Miyamura T, Lemon SM, Walker CM, Wakita T), Springer Japan, 2016. pp.3-56.
  • 22. ViralZone, Swiss Institute of Bioinformatics, Lausanne, Switzerland. Hepacivirus. Available at: https://viralzone.expasy.org/37?outline=all_by_species [Accessed August 23, 2019].
  • 23. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007; 9(9): 1089-97.
  • 24. Bartenschlager R, Penin F, Lohmann V, André P. Assembly of infectious hepatitis C virus particles. Trends Microbiol 2011; 19(2): 95-103.
  • 25. Tan SL, Pause A, Shi Y, Sonenberg N. Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov 2002; 1(11): 867-81.
  • 26. Araújo FM, Sonoda IV, Rodrigues NB, Teixeira R, Redondo RA, Oliveira GC. Genetic variability in the 5` UTR and NS5A regions of hepatitis C virus RNA isolated from non-responding and responding patients with chronic HCV genotype 1 infection. Mem Inst Oswaldo Cruz 2008; 103(6): 611-4.
  • 27. Neufeldt CJ, Joyce MA, Van Buuren N, Levin A, Kirkegaard K, Gale M Jr, et al. The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites. PLoS Pathog 2016 10; 12(2): e1005428.
  • 28. Giorda KM, Hebert DN. Viroporins Customize Host Cells for Efficient Viral Propagation. DNA Cell Biol 2013; 32(10): 557-64.
  • 29. Li YP, Ramirez S, Mikkelsen L, Bukh J. Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77. J Virol 2015; 89(1): 811-23.
  • 30. Osburn WO, Fisher BE, Dowd KA, Urban G, Liu L, Ray SC, et al. Spontaneous control of primary hepatitis C virus infection and immunity against persistent reinfection. Gastroenterology 2010; 138: 315-24.
  • 31. Wong JA, Bhat R, Hockman D, Logan M, Chen C, Levin A, et al. Recombinant hepatitis C virus envelope glycoprotein vaccine elicits antibodies targeting multiple epitopes on the envelope glycoproteins associated with broad cross-neutralization. J Virol 2014; 88: 14278-88.
  • 32. Wang X, Yan Y, Gan T, Yang X, Li D, Zhou D, et al. A trivalent HCV vaccine elicits broad and synergistic polyclonal antibody response in mice and rhesus monkey. Gut 2019; 68(1): 140-149.
  • 33. Abdel-Hakeem MS, Shoukry NH. Protective immunity against hepatitis C: many shades of gray. Front Immunol 2014; 5: 274.
  • 34. Takaki A, Wiese M, Maertens G, Depla E, Seifert U, Liebetrau A, et al. Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat Med 2000; 6(5): 578-82.
  • 35. Kidd-Ljunggren K, Miyakawa Y, Kidd AH. Genetic variability in hepatitis B viruses. J Gen Virol 2002; 83: 1267-80.
  • 36. Heim MH, Thimme R. Innate and adaptive immune responses in HCV infections. J Hepatol 2014; 61(1 Suppl):S14-25.
  • 37. Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ, Harris HJ, et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 2008; 47(1): 17-24.
  • 38. Billerbeck E, Wolfisberg R, Fahnoe U, Xiao JW, Quirk C, Luna JM, et al. Mouse models of acute and chronic hepacivirus infection. Science 2017: 357(6347); 204-8.
  • 39. Grebely J, Morris MD, Rice TM, Bruneau J, Cox AL, Kim AY, et al. Cohort profile: the international collaboration of incident HIV and hepatitis C in injecting cohorts (InC3) Study. Int J Epidemiol 2013; 42:1649-59.
  • 40. Swadling L, Halliday J, Kelly C, Brown A, Capone S, Ansari MA, et al. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection. Vaccines (Basel) 2016; 4(3); pii: E27.
  • 41. Choo QL, Kuo G, Ralston R, Weiner A, Chien D, Van Nest G, et al. Vaccination of chimpanzees against infection by the hepatitis C virus. Proc Natl Acad Sci U S A 1994; 91:1294-8.
  • 42. Frey SE, Houghton M, Coates S, Abrignani S, Chien D, Rosa D, et al. Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. Vaccine 2010; 28: 6367-73.
  • 43. Folgori A, Capone S, Ruggeri L, Meola A, Sporeno E, Ercole BB, et al. A T-cell HCV vaccine eliciting effective immunity against heterologous virus challenge in chimpanzees. Nat Med 2006; 12(2):190-7.
  • 44. von Delft A, Donnison TA, Lourenco J, Hutchings C, Mullarkey CE, Brown A, et al. The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes. Vaccine 2018; 36: 313-21.
  • 45. Alvarez-Lajonchere L, Shoukry NH, Gra B, Amador-Cañizares Y, Helle F, Bédard N, et al. Immunogenicity of CIGB-230, a therapeutic DNA vaccine preparation, in HCV-chronically infected individuals in a Phase I clinical trial. J Viral Hepat 2009; 16(3): 156-67.
  • 46. Amador-Cañizares Y, Martínez-Donato G, Alvarez-Lajonchere L, Vasallo C, Dausá M, Aguilar-Noriega D, et al. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin. World J Gastroenterol 2014; 20(1): 148-62.
  • 47. Fournillier A, Frelin L, Jacquier E, Ahlén G, Brass A, Gerossier E, et al. A heterologous prime/boost vaccination strategy enhances the immunogenicity of therapeutic vaccines for hepatitis C virus. J Infect Dis 2013; 208(6): 1008-19.
  • 48. Strickland GT, El-Kamary SS, Klenerman P, Nicosia A. Hepatitis C vaccine: supply and demand. Lancet Infect Dis 2008; 8: 379-86.
  • 49. Firbas C, Boehm T, Buerger V, Schuller E, Sabarth N, Jilma B, et al. Immunogenicity and safety of different injection routes and schedules of IC41, a hepatitis C virus (HCV) peptide vaccine. Vaccine 2010; 28: 2397-407.
  • 50. Jacobson IM, McHutchinson JG, Boyer TD, Schiff ER, Everson GT, Pockros PJ, et al. GI-5005 therapeutic vaccine plus PEG-IFN/RIBAVIRIN in genotype 1 chronic HCV patients. J Hepatol 2010; 52: A2006.