Published December 14, 2020 | Version 1.0
Dataset Open

GeoVectors-Australia-Oceania-tags (v1.0)

  • 1. L3S Research Center, Leibniz University Hannover, Germany
  • 2. Data Science & Intelligent Systems Group (DSIS), University of Bonn, Germany

Description

Description

The GeoVectors corpus is a comprehensive large-scale linked open corpus of OpenStreetMap (https://www.openstreetmap.org/) entity embeddings that provides latent representations of over 980 million entities. The GeoVectors capture the semantic and geographic similarities of OpenStreetMap entities and make them directly accessible to machine learning applications. The "-tags" datasets provide embeddings that capture the semantic similarities of OpenStreetMap entities. The "-location" datasets provide the geographic similarities.

Contents

This dataset was derived from an OpenStreetMap snapshot that was taken on November 10, 2020 (© OpenStreetMap contributors).

We provide the GeoVectors in region-specific subsets. This subset contains tag-embeddings for the region "Australia-Oceania" including the following countries:

  • American-Oceania
  • Australia
  • Cook-Islands
  • Fiji
  • Ile-De-Clipperton
  • Kiribati
  • Marshall-Islands
  • Micronesia
  • Nauru
  • New-Caledonia
  • New-Zealand
  • Niue
  • Palau
  • Papua-New-Guinea
  • Pitcairn-Islands
  • Polynesie-Francaise
  • Samoa
  • Solomon-Islands
  • Tokelau
  • Tonga
  • Tuvalu
  • Vanuatu
  • Wallis-Et-Futuna

File format

The embeddings are provided in the tab-separated values (tsv) format. Each row contains the embedding of a single OpenStreetMap entity. The first column contains the OpenStreetMap type and the second column contains the OpenStreetMap id of the respective entity. The type can either be node (n), way (w), or relation (r). The remaining columns represent the dimensions of the embedding space. (See also header.tsv)

Further information:

For further information, please visit http://geovectors.l3s.uni-hannover.de

Funding:

This work was partially funded by DFG, German Research Foundation (“WorldKG", DE 2299/2-1), the Federal Ministry of Education and Research (BMBF), Germany (“Simple-ML", 01IS18054), the Federal Ministry for Economic Affairs and Energy (BMWi), Germany (“d-E-mand", 01ME19009B), and the European Commission (EU H2020, “smashHit", grant-ID 871477).

Files

Files (8.9 GB)

Name Size Download all
md5:edb2e8304b3288c27cde4c318446f779
21.0 MB Download
md5:8028eaa183694358f7f60e294e654058
4.7 GB Download
md5:cedd5aa7a320a7c29715ce46e9072867
3.5 MB Download
md5:ed64c8737f3b322b89719a2dde4cc879
45.6 MB Download
md5:aeac30cf1c385adb69ab0e962ebb3efd
1.1 kB Download
md5:2b222ae2bebd8caf01e22422cf28fc12
65.3 kB Download
md5:07c143edecf3ba8a029da6a30455ea0f
4.5 MB Download
md5:7bc9b9a975a371ae92e9135ab3725b5b
5.8 MB Download
md5:27ffecbc35d3e30e2404b0948b0b4978
7.0 MB Download
md5:04a38964b5c2bb4aca7e01cd67319e77
795.4 kB Download
md5:879aa4519de8ea40d7679dc76adc05a9
84.5 MB Download
md5:c8c2d4aac3417e7592926c1b2f8c99b7
3.9 GB Download
md5:a7820e2c14c1fc06ded87e7594ccae51
843.0 kB Download
md5:eafd153bf05f5665239d96d48479aec5
3.7 MB Download
md5:d9790ced5c6d361ef55357baf56df87a
68.0 MB Download
md5:13637e22f9b1d99642dd16b2913e1335
334.1 kB Download
md5:dedd3438d49e210ee2ee3b15d634c942
62.8 MB Download
md5:b0d1c72bff1fd03f3f0d5fad82a611aa
8.4 MB Download
md5:3e87417e8d32f824f2ba1dd4b5f06b15
9.7 MB Download
md5:4fc49820298cfc0ca6ba091e135efd64
333.1 kB Download
md5:d92aa34f981108a52f8509c83144d2e3
12.1 MB Download
md5:a039e09b85a17a44f9077c715d27e807
5.0 MB Download
md5:3efb6346009026c343cb164c4b319452
17.5 MB Download
md5:f0eb00b3c5e2efe58a35aa033340a255
1.1 MB Download