Datasets of the article "From Classification to Quantification in Tweet Sentiment Analysis"
Description
Datasets used for the following SNAM paper:
---------------------------------------------------------------------------------------------------
Title: From Classification to Quantification in Tweet Sentiment Analysis
Authors: Wei Gao and Fabrizio Sebastiani
Organization: Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
---------------------------------------------------------------------------------------------------
[Content]
* SemEval2013, SemEval2014, SemEval2015 datasets:
- semeval.train.feature.txt: Training set for learning sentiment models at development stage
- semeval.dev.feature.txt: Held-out set for tuning parameters
- semeval.train+dev.feature.txt: Training set for learning the final sentiment model
- semeval13.test.feature.txt: SemEval2013 test set
- semeval14.test.feature.txt: SemEval2014 test set
- semeval15.test.feature.txt: SemEval2015 test set
* Other datasets: semeval2016, sanders, sst, omd, hcr, gasp, wa, wb
- X.train.feature.txt: Training set for learning sentiment models at development stage
- X.dev.feature.txt: Held-out set for tuning parameters
- X.train+dev.feature.txt: Training set for learning the final sentiment model
- X.test.feature.txt (or X.dev-test.feature.txt for semeval2016 only): Test set
where X is one of semeval2016, sanders, sst, omd, hcr and gasp.
* Training files are saved in ./data/train directory, and held-out and test files are in ./data/test directory
For more details, please refer to the paper.
[Citation]
You can cite the following paper when referring to the dataset:
@article{gao2016classification,
title={From classification to quantification in tweet sentiment analysis},
author={Gao, Wei and Sebastiani, Fabrizio},
journal={Social Network Analysis and Mining},
volume={6},
number={1},
pages={19},
year={2016},
publisher={Springer}
}
Files
tweet_sentiment_quantification_snam.zip
Files
(238.2 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:ce79869f4aae6e9d56ce6e7011ac887e
|
238.2 MB | Preview Download |
Additional details
Related works
- Is derived from
- Journal article: 10.1007/s13278-016-0327-z (DOI)